HDU 4746 Mophues(莫比乌斯反演)题解
Posted kirinsb
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了HDU 4746 Mophues(莫比乌斯反演)题解相关的知识,希望对你有一定的参考价值。
题意:
\(Q\leq5000\)次询问,每次问你有多少对\((x,y)\)满足\(x\in[1,n],y\in[1,m]\)且\(gcd(x,y)\)的质因数分解个数小于等于\(p\)。\(n,m,p\leq5e5\)。
思路:
题目即求
\[
\sum_k\sum_i=1^n\sum_j=1^m[gcd(i,j)=k]\quad,k满足质因数个数\leq p
\]
令\(f(n)\)为\(gcd\)为\(n\)的对数,\(F(n)\)为\(gcd\)为\(n\)倍数的对数。
由莫比乌斯反演可得
\[
\beginaligned
\sum_k\sum_i=1^n\sum_j=1^m[gcd(i,j)=k]
&=\sum_kf(k)\&=\sum_k\sum_k|d\mu(\fracdk)F(d)\&=\sum_k\sum_k|d\mu(\fracdk)\lfloor\fracnk\rfloor\lfloor\fracmk\rfloor\&=\sum_d\lfloor\fracnk\rfloor\lfloor\fracmk\rfloor\sum_k|d\mu(\fracdk)
\endaligned
\]
\(\sum_k|d\mu(\fracdk)\)可以直接打表打出来。
直接枚举\(d\),因为\(\lfloor\fracnk\rfloor\lfloor\fracmk\rfloor\)很多都是重复的,那么我可以直接分块加速,先求\(\sum_k|d\mu(\fracdk)\)的前缀和,然后每次选\(i\)~\(min(\lfloor \fracn\lfloor \fracni\rfloor\rfloor,\lfloor \fracm\lfloor \fracmi\rfloor\rfloor)\)这个区间走,那么\(\sqrt(min(n, m))\)就遍历完了。
代码:
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<ctime>
#include<cmath>
#include<cstdio>
#include<string>
#include<vector>
#include<cstring>
#include<sstream>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 5e5 + 5;
const int INF = 0x3f3f3f3f;
const ull seed = 131;
const ll MOD = 1e9;
using namespace std;
int num[maxn], sum[21][maxn];
int mu[maxn], vis[maxn];
int prime[maxn], cnt;
void getmu(int n)
memset(vis, 0, sizeof(vis));
memset(mu, 0, sizeof(mu));
memset(num, 0, sizeof(num));
cnt = 0;
mu[1] = 1;
for(int i = 2; i <= n; i++)
if(!vis[i])
prime[cnt++] = i;
mu[i] = -1;
num[i] = 1;
for(int j = 0; j < cnt && prime[j] * i <= n; j++)
vis[i * prime[j]] = 1;
num[i * prime[j]] = num[i] + 1;
if(i % prime[j] == 0) break;
mu[i * prime[j]] = -mu[i];
void init()
memset(sum, 0, sizeof(sum)); //sum[p][d]:d的除数的质因子个数为p的sum(mu)
for(int i = 1; i <= 5e5; i++)
for(int j = i; j <= 5e5; j += i)
sum[num[i]][j] += mu[j / i];
for(int i = 1; i <= 5e5; i++) //d的除数质因子个数小于p的sum(mu)
for(int j = 1; j <= 19; j++)
sum[j][i] += sum[j - 1][i];
for(int i = 1; i <= 5e5; i++)
for(int j = 0; j <= 19; j++)
sum[j][i] += sum[j][i - 1];
int main()
getmu(5e5);
init();
ll n, m;
int p, T;
scanf("%d", &T);
while(T--)
ll ans = 0;
scanf("%lld%lld%d", &n, &m, &p);
if(p > 19)
printf("%lld\n", n * m);
continue;
for(int i = 1; i <= min(n, m);)
int l, r;
l = i, r = min(n / (n / i), m / (m / i));
ans += 1LL * (n / i) * (m / i) * (sum[p][r] - sum[p][l - 1]);
i = r + 1;
printf("%lld\n", ans);
return 0;
以上是关于HDU 4746 Mophues(莫比乌斯反演)题解的主要内容,如果未能解决你的问题,请参考以下文章