P2253 好一个一中腰鼓!

Posted -sheldon

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了P2253 好一个一中腰鼓!相关的知识,希望对你有一定的参考价值。

Description

  给定一个01子串和操作数,每次操作可以使一个元素0变为1, 1变为0,求区间最长连续相邻不相等的长度

Solution

  对于最长连续不相等,我们可以用几个量来维护,为:

1  lf 从左边开始的最长连续相邻不相等最大长度

2 rf 从右边开始的最长连续相邻不相等最大长度

3 mf 内部的最长连续相邻不相等最大长度

  所以,最长的长度为max(tr[1].lf, tr[1].rf, tr[1].mf),对于每一个变量我们可以这样维护

tr[x].lf = max(tr[x << 1].lf, tr[x << 1].lf + tr[x << 1 | 1].lf) 当然是有条件的base[mid] != base[mid + 1] && mid - l + 1 == tr[p].lf base表示为0还是为1,从右面同理

 

mf(p) = max(mf(p << 1), mf(p << 1 | 1));
if (base[mid] != base[mid + 1])
mf(p) = max(mf(p), lf(p << 1 | 1) + rf(p << 1));

Code

 

#include <bits/stdc++.h>
const int N = 20010;
using namespace std;
int n, m;
int turn[2] = 1, 0, base[N];
struct emmm 
    int l, r, t, mf, lf, rf;
    #define l(x) tr[x].l
    #define r(x) tr[x].r
    #define mf(x) tr[x].mf
    #define lf(x) tr[x].lf
    #define rf(x) tr[x].rf
 tr[N << 2];
void pushup(int p, int l, int r, int mid) 
    lf(p) = lf(p << 1);
    if (base[mid] != base[mid + 1] && mid - l + 1 == lf(p << 1))
        lf(p) += lf(p << 1 | 1);
    rf(p) = rf(p << 1 | 1);
    if (base[mid] != base[mid + 1] && r - mid == rf(p << 1 | 1))
        rf(p) += rf(p << 1);
    mf(p) = max(mf(p << 1), mf(p << 1 | 1));
    if (base[mid] != base[mid + 1])
        mf(p) = max(mf(p), lf(p << 1 | 1) + rf(p << 1));
    return ;
 
void build(int p, int l, int r) 
    l(p) = l;
    r(p) = r;
    if (l == r) 
        mf(p) = lf(p) = rf(p) = 1;
        return ;
    
    int mid = (l + r) >> 1;
    build(p << 1, l, mid);
    build(p << 1 | 1, mid + 1, r); 
    pushup(p, l, r, mid);

void update(int p, int l, int r, int x) 
    if (l > x || r < x) return ;
    if (l == x &&  r == x) 
        base[l] = turn[base[l]];
        return ;
    
    int mid = (l + r) >> 1;
    update(p << 1, l, mid, x);
    update(p << 1 | 1, mid + 1, r, x);
    pushup(p, l, r, mid);

int main() 
    scanf("%d%d", &n, &m);
    build(1, 1, n);
    for (int i = 1; i <= m; i++) 
        int x;
        scanf("%d", &x);
        update(1, 1, n, x);
        cout << max(lf(1), max(rf(1), mf(1))) << endl;
    
    return 0;

 

以上是关于P2253 好一个一中腰鼓!的主要内容,如果未能解决你的问题,请参考以下文章

P2253 好一个一中腰鼓!

洛谷 P2253 好一个一中腰鼓 --线段树

洛谷 P2253 好一个一中腰鼓!

洛谷P2253 好一个一中腰鼓!

P2253 好一个一中腰鼓!

P2253 好一个一中腰鼓!