python学习_多进程

Posted laura-l

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python学习_多进程相关的知识,希望对你有一定的参考价值。

1、基础知识:

  计算机的硬件组成:

    主板 固化(寄存器,是直接和cpu进行交互的硬件)

    cpu 中央处理器:计算(数字计算和逻辑计算) 和控制(控制所有的硬件协调工作)

    存储 硬盘 内存

    输入设备 键盘 鼠标 话筒

    输出设备 显示器 音响 打印机

  早期的计算机是以计算为核心的,现在的计算机是以存储为核心的

  操作系统是一个软件 是一个能直接操作硬件的一个软件

  操作系统的目标:让用户使用更加轻松,高可用,低耦合,封装了所有硬件的接口,使用户更方便的使用,对于计算机内的所有资源,进行一个合理的调度和分配

  进程相关基础知识:

    进程:正在执行的程序,是程序执行过程中的相关指令,数据集等的集合,也可以叫做程序的一次执行过程,是一个动态的概念

    进程的组成:代码段 数据段 PCB:进程控制块

    进程的三大基本状态:

      就绪状态:已经获得了运行所需要的所有资源,除了cpu

      执行状态:已经获得了所有资源,包括cpu,处于正在执行的状态

      阻塞状态:因为各种原因,进程放弃了cpu,导致进程无法继续执行,此时进程处于内存中,继续等待获取cpu

      一个特殊状态:挂起状态,因为各种原因,进程放弃了cpu,导致进程无法继续执行,此时进程被踢出内存

2、进程

   multiprocessing python的内置模块,用于多进程编程 Process from multiprocessing import Process

  并行:指两件或者多事情,在同一个时间点开始执行

  并发:指两件或者多件事情,在同一个时间间隔内同时执行

  同步:某一个任务的执行必须依赖另一个任务的返回结果

  异步;某一个任务的执行不需要依赖另一个任务的返回,只需要告诉另一个任务一声

  阻塞:程序因为类似IO等待,等待时间等无法继续执行

  非阻塞:程序遇到类似IO操作时候,不在阻塞等待,如果没有及时处理IO,就报错或者跳过

  进程的方法或者属性:

    os.getpid() 获取当前进程的pid os.getppid()获取当前进程的父进程id

    start() 开启一个子进程

    join()异步变同步,让父进程等待子进程执行结束,再继续执行(当主进程执行到这条语句的时候,主进程阻塞,等待子进程执行完毕,主进程继续执行),join必须放在start之后

    is_alive() 判断进程是否活着

    terminate() 杀死进程

    属性;

      name: 子进程的名字

      pid:子进程的pid

      deamon:设置进程为守护进程,给True代表为守护进程,默认为false,不是守护进程

      守护进程:p.daemon=True

        随着父进程的代码执行完毕就结束(敲黑板,划重点!!是代码执行完毕--主进程不会阻塞等待)

        守护进程不能创建子进程

        守护进程必须在进程start之前设置

  IPC:进程间通信

    锁机制:为了多进程通信的时候,保护数据的安全性

      from multiprocessing import Lock

      l = lock()

      l.acquire() 获得锁(此时其他进程不可以访问锁住的资源)

      l.release() 释放锁(其他进程可以访问)

    信号机制:

      sem = Semaphore(n)

      n:初始化的时候一把锁配几把钥匙,int

      l.acquire()

      l.release()

      信号量机制比锁机制多了个计数器,这个计数器用来记录当前剩余几把锁,计数器为0,表达当前没有钥匙,acquire()处于阻塞状态,acquire()一次,计数器内部减1,release一次,计数器加一;

    事件机制:

      e = Event()

      初始为false,阻塞状态

      e.set() 设置is_set()为True,代表非阻塞状态

      e.clear() 设置is_set()为false,代表阻塞状态

      e.wait()判断is_set的值,True为非阻塞。fase为阻塞

      e.is_set() 标志

3、生产者消费者模型

   简要介绍:主要是用来解耦,借助队列来实现生产者消费者模型

        栈:先进后出

        队列:先进先出

   import queue   不能进行多进程之间的数据传输

   from multiprocessing import Queue 借助Queue解决生产者消费者模型

   队列是安全的

   q = Queue(num---队列的最大长度)

   q.get() 阻塞等待获取数据,如果有数据直接获取,没有则阻塞等待

   q.put() 阻塞 如果可以继续往队列中放数据,就直接放,不能放则阻塞等待

   q.get_nowait() 不阻塞,如果有数据直接获取,没有数据就报错

   q.put_nowait() 不阻塞,如果可以继续往队列中放数据,就直接放,不能就报错

  from multiprocessing import JoinableQueue 可连接的队列

    继承Queue 可以使用queue的方法

    增加的方法:

      q.join() 用户生产者接收消费者的返回结果,接收全部生产的数量,以便知道什么时候队列里的数据被消费完了

      q.task_done() 每消费一个数据,就返回一个表示返回结果,生产者就您呢个获得当前消费者消费了多少个数据,每消费队列里的一个数据,就给join返回一个表示

  管道:

    from multiprocessing import Pipe

    con1, con2 =  Pipe()

    管道是不安全的

    管道是用于多线程之间通信的一种方式

    单进程中:

      con1发则con2收,con2收则con1发

    多进程中:

      父进程con1发,子进程的con2收

    管道中错误EOFError 父进程中如果关闭发送端,子进程还在继续接收,就回导致EOFError

4、进程池

  一个池子,里面有固定数量的进程,且处在待命状态,一旦有任务来,马上就有进程去处理

   开启进程需要操作系统消耗大量的事件去管理它,大量的事件让cpu去调度它

   进程池会帮助程序员去管理池中的进程

    from multiprocessing import Pool

      p = Pool(os.cpu_count() + 1)

  进程池的三个方法:
    map(func, iterable)

      func: 进程池中进程执行的任务函数

      iterable:可迭代对象,是把可迭代对象中的每一个元素传给任务函数当参数

from multiprocessing import Pool
import os


def func(num):
    num += 1
    print(num)
    return num


if __name__ == __main__:
    p = Pool(os.cpu_count() + 1)
    print(os.cpu_count())
    res = p.map(func, [i for i in range(20)]) . # i作为参数传入func中
    p.close() # 表示不能再向进程池中添加任务
    p.join()  # 表示等待进程池中所有任务执行完毕
    print(type(res))

 

    apply(func,arg=()) 同步的执行,即池中的进程一个个的去执行任务

      func:进程池中进程执行的任务函数

      args:可迭代对象的参数,是传给任务函数的参数

      同步执行任务,不需要close和join, 进程池中所有的进程都是普通进程(主进程需要等待其结束)

 

from multiprocessing import Pool
import requests
import time


def func(url):
    res = requests.get(url)
    if res.status_code == 200:
        return ok


if __name__ == __main__:
    p = Pool(5)
    l = [https://www.baidu.com,
         http://www.jd.com,
         http://www.taobao.com,
         http://www.mi.com,
         http://www.cnblogs.com,
         https://www.bilibili.com,
         ]
    start = time.time()
    for i in l:
        p.apply(func, args=(i,)) #即使有n个线程也是一个一个的去执行
    print(time.time() - start)

    start = time.time()
    for i in l:
        p.apply_async(func, args=(i, ))
    p.close()
    p.join()
    print(time.time() - start)

 

    apply_async(func,args=(), callback=None) 异步:池中的进程一次性去执行任务

      func:进程池中进程执行的任务函数

      args:可迭代对象的参数,是传给任务函数的参数

      callback: 回调函数 当进程池中有进程处理完任务来,返回的结果可以交给回调函数,由回调函数进程进一步的处理,这是只有异步才有的

      异步处理任务,需要close和join

      异步处理任务时,进程池中所有的进程都是守护进程

      回调函数:

        进程的任务函数的返回值,被当成回调函数的形参接收到,一次进一步的处理操作

        回调函数是由主进程调用的,而不是子进程,子进程只负责把结果给回调函数

 

from multiprocessing import Pool
import requests
import time
import os


def func(url):
    res = requests.get(url)
    print("子进程的pid:%s, 父进程的pid:%s" % (os.getpid(), os.getppid()))
    if res.status_code == 200:
        return url


def cal_back(sta):
    url = sta
    print("回调函数的pid:%s" % os.getpid())
    with open(content.txt, a+) as f:
        f.write(url + "\\n")


if __name__ == __main__:
    p = Pool(5)
    l = [https://www.baidu.com,
         http://www.jd.com,
         http://www.taobao.com,
         http://www.mi.com,
         http://www.cnblogs.com,
         https://www.bilibili.com,
         ]
    print("主进程pid:%s" % os.getpid())
    for i in l:
        p.apply_async(func, args=(i,), callback=cal_back)
    p.close()
    p.join()

 

  进程和进程池对比

 

from multiprocessing import Process, Pool
import time


def func(num):
    num += 1
    # print(num)


if __name__ == __main__:
    p = Pool(5)
    start = time.time()
    p.map(func, [i for i in range(1000)])
    p.close()  # 指不能再向进程池中添加任务
    p.join()  # 等待进程池中的所有任务执行完毕
    print(time.time() - start)

    p_l = []
    start = time.time()
    for i in range(1000):
        p = Process(target=func, args=(i,))
        p.start()
        p_l.append(p)
    [i.join() for i in p_l]
    print(time.time() - start)

 

 

 

5、生产者消费者模型实例

  队列实现生产者消费者模型

from multiprocessing import Queue, Process
import time


def producer(q, name):
    for i in range(20):
        q.put(name)
        print("生产第%s个%s" % (i, name))
    # q.put(None)


def consumer(q, name, color):
    while 1:
        info = q.get()
        if info:
            print("%s %s拿走来%s\\033[0m" % (color, name, info))
        else:
            break


if __name__ == __main__:
    q = Queue(10)
    p = Process(target=producer, args=(q, number one))
    p1 = Process(target=producer, args=(q, number two))
    p2 = Process(target=producer, args=(q, number three))
    c1 = Process(target=consumer, args=(q, alex, \\033[31m))
    c2 = Process(target=consumer, args=(q, wusir, \\033[32m))
    p_l = [p, p1, p2, c2, c1]
    [i.start() for i in p_l]
    p.join()
    p1.join()
    p2.join()
    q.put(None)
    q.put(None)  # 设置标志 表示没有数据了,生产者不再生产数据

 

  joinableQueue实现生产者消费者进程

from multiprocessing import JoinableQueue, Process


def producer(q, name):
    for i in range(20):
        q.put(name)
        print("生产第%s个%s" % (i, name))
    q.join() 生产者进程等待消费者进程消费完成


def consumer(q, name):
    while 1:
        q.get()
        print("%s 拿走了一个" % name)
        q.task_done()


if __name__ == __main__:
    q = JoinableQueue(10)
    p1 = Process(target=producer, args=(q, one))
    c1 = Process(target=consumer, args=(q, alex))
    c1.daemon = True # 设置守护进程
    p1.start()
    c1.start()
    p1.join() # 主进程等待生产者进程

    # 主进程等待生产者进程结束
    # 程序有3个进程,主进程和生产者进程和消费者进程。  当主进程执行到35行代码时,主进程会等待生产进程结束
    # 而生产进程中(第26行)会等待消费者进程把所有数据消费完,生产者进程才结束。
    # 现在的状态就是  主进程等待生产者进程结束,生产者进程等待消费者消费完所有数据
    # 所以,把消费者设置为守护进程。  当主进程执行完,就代表生产进程已经结束,也就代表消费者进程已经把队列中数据消费完
    # 此时,主进程一旦结束,守护进程也就是消费者进程也就跟着结束。    整个程序也就能正常结束了。

 

      

6、其他相关知识

  进程间的内存共享

    from multiprocessing import Manager, Value

    m = manager()

    num = m.dict() num = m.list([])

  IPC:管道 队列(锁 信号量 事件)

  多个进程之间不能共享内存,不能修改全局变量

  from multiprocessing import value

    num = Value("i"--数据类型, num--数据)

    num.value() 值

  Manager模块:多进程间共享数据

    m = Manager()

    num = m.list([1,2,3])

  

 

      

以上是关于python学习_多进程的主要内容,如果未能解决你的问题,请参考以下文章

Python学习笔记__10.2章 多线程

Python学习笔记__10.5章 分布式进程

python学习_day32_并发编程之多进程

python学习_day35_并发编程之多进程3

python学习_day41_socketserver模块

Python学习笔记(十五)