Raid与Lvm磁盘阵列
Posted yxf-
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Raid与Lvm磁盘阵列相关的知识,希望对你有一定的参考价值。
一、Raid磁盘冗余阵列
RAID技术通过把多个硬盘设备组合成一个容量更大、安全性更好的磁盘阵列,并把数据切割成多个区段后分别存放在各个不同的物理硬盘设备上,然后利用分散读写技术来提升磁盘阵列整体的性能,同时把多个重要数据的副本同步到不同的物理硬盘设备上,从而起到了非常好的数据冗余备份效果。
RAID技术确实具有非常好的数据冗余备份功能,但是它也相应地提高了成本支出。RAID不仅降低了硬盘设备损坏后丢失数据的几率,还提升了硬盘设备的读写速度,所以它在绝大多数运营商或大中型企业中得以广泛部署和应用。
出于成本和技术方面的考虑,需要针对不同的需求在数据可靠性及读写性能上作出权衡,制定出满足各自需求的不同方案。
1、Raid0
RAID 0技术把多块物理硬盘设备(至少两块)通过硬件或软件的方式串联在一起,组成一个大的卷组,并将数据依次写入到各个物理硬盘中。这样一来,在最理想的状态下,硬盘设备的读写性能会提升数倍,但是若任意一块硬盘发生故障将导致整个系统的数据都受到破坏。通俗来说,RAID 0技术能够有效地提升硬盘数据的吞吐速度,但是不具备数据备份和错误修复能力。
2、Radi1
尽管RAID 0技术提升了硬盘设备的读写速度,但是它是将数据依次写入到各个物理硬盘中,也就是说,它的数据是分开存放的,其中任何一块硬盘发生故障都会损坏整个系统的数据。因此,如果生产环境对硬盘设备的读写速度没有要求,而是希望增加数据的安全性时,就需要用到RAID 1技术了。RAID 1技术虽然十分注重数据的安全性,但是因为是在多块硬盘设备中写入了相同的数据,因此硬盘设备的利用率得以下降。由于需要把数据同时写入到两块以上的硬盘设备,这无疑也在一定程度上增大了系统计算功能的负载。
3、Raid5
RAID5技术是把硬盘设备的数据奇偶校验信息保存到其他硬盘设备中。RAID 5磁盘阵列组中数据的奇偶校验信息并不是单独保存到某一块硬盘设备中,而是存储到除自身以外的其他每一块硬盘设备上,这样的好处是其中任何一设备损坏后不至于出现致命缺陷;RAID 5技术实际上没有备份硬盘中的真实数据信息,而是当硬盘设备出现问题后通过奇偶校验信息来尝试重建损坏的数据。RAID这样的技术特性"妥协"地兼顾了硬盘设备的读写速度、数据安全性与存储成本问题。
4、Raid10
RAID 10技术是RAID 1+RAID 0技术的一个"组合体"。 RAID 10技术需要至少4块硬盘来组建,其中先分别两两制作成RAID 1磁盘阵列,以保证数据的安全性;然后再对两个RAID 1磁盘阵列实施RAID 0技术,进一步提高硬盘设备的读写速度。这样从理论上来讲,只要坏的不是同一组中的所有硬盘,那么最多可以损坏50%的硬盘设备而不丢失数据。由于RAID 10技术继承了RAID 0的高读写速度和RAID 1的数据安全性,在不考虑成本的情况下RAID 10的性能都超过了RAID 5,因此当前成为广泛使用的一种存储技术。
5、mdadm命令
作用:用于管理Linux系统中的软件RAID硬盘阵列。
格式:mdadm [模式] <RAID设备名称> [选项] [成员设备名称]。
选项:
参数 |
作用 |
-a |
检测设备名称 |
-n |
指定设备数量 |
-l |
指定RAID级别 |
-C |
创建 |
-v |
显示过程 |
-f |
模拟设备损坏 |
-r |
移除设备 |
-Q |
查看摘要信息 |
-D |
查看详细信息 |
-S |
停止RAID磁盘阵列 |
-x |
指定备份盘 |
二、Lvm逻辑卷管理器
LVM可以允许用户对硬盘资源进行动态调整。逻辑卷管理器是Linux系统用于对硬盘分区进行管理的一种机制,理论性较强,其创建初衷是为了解决硬盘设备在创建分区后不易修改分区大小的缺陷。尽管对传统的硬盘分区进行强制扩容或缩容从理论上来讲是可行的,但是却可能造成数据的丢失。而LVM技术是在硬盘分区和文件系统之间添加了一个逻辑层,它提供了一个抽象的卷组,可以把多块硬盘进行卷组合并。这样一来,用户不必关心物理硬盘设备的底层架构和布局,就可以实现对硬盘分区的动态调整。
物理卷处于LVM中的最底层,可以将其理解为物理硬盘、硬盘分区或者RAID磁盘阵列,这都可以。卷组建立在物理卷之上,一个卷组可以包含多个物理卷,而且在卷组创建之后也可以继续向其中添加新的物理卷。逻辑卷是用卷组中空闲的资源建立的,并且逻辑卷在建立后可以动态地扩展或缩小空间。这就是LVM的核心理念。
1、创建逻辑卷
常用的LVM部署命令:
功能/命令 |
物理卷管理 |
卷组管理 |
逻辑卷管理 |
扫描 |
pvscan |
vgscan |
lvscan |
建立 |
pvcreate |
vgcreate |
lvcreate |
显示 |
pvdisplay |
vgdisplay |
lvdisplay |
删除 |
pvremove |
vgremove |
lvremove |
扩展 |
vgextend |
lvextend |
|
缩小 |
vgreduce |
lvreduce |
[root@yxf]# pvcreate /dev/sdb /dev/sdc
Physical volume "/dev/sdb" successfully created
Physical volume "/dev/sdc" successfully created
②把两块硬盘设备加入到storage卷组中,然后查看卷组的状态。
[root@yxf]# vgcreate storage /dev/sdb /dev/sdc
Volume group "storage" successfully created
[root@yxf]# vgdisplay
③切割出一个约为150MB的逻辑卷设备。
在对逻辑卷进行切割时有两种计量单位。第一种是以容量为单位,所使用的参数为-L。例如,使用-L 150M生成一个大小为150MB的逻辑卷。另外一种是以基本单元的个数为单位,所使用的参数为-l。每个基本单元的大小默认为4MB。例如,使用-l 37可以生成一个大小为37×4MB=148MB的逻辑卷。
[root@yxf]# lvcreate -n vo -l 37 storage
Logical volume "vo" created
[root@yxf]# lvdisplay
2、逻辑卷扩容
①逻辑卷vo扩展至290MB。
[root@yxf]# lvextend -L 290M /dev/storage/vo
Rounding size to boundary between physical extents: 292.00 MiB
Extending logical volume vo to 292.00 MiB
Logical volume vo successfully resized
②检查硬盘完整性,并重置硬盘容量。
[root@yxf]# e2fsck -f /dev/storage/vo
e2fsck 1.42.9 (28-Dec-2013)
Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Pass 5: Checking group summary information
/dev/storage/vo: 11/38000 files (0.0% non-contiguous), 10453/151552 blocks
[root@yxf]# resize2fs /dev/storage/vo
resize2fs 1.42.9 (28-Dec-2013)
Resizing the filesystem on /dev/storage/vo to 299008 (1k) blocks.
The filesystem on /dev/storage/vo is now 299008 blocks long.
3、逻辑卷缩容
相较于扩容逻辑卷,在对逻辑卷进行缩容操作时,其丢失数据的风险更大。所以在生产环境中执行相应操作时,一定要提前备份好数据。另外Linux系统规定,在对LVM逻辑卷进行缩容操作之前,要先检查文件系统的完整性(当然这也是为了保证我们的数据安全)。在执行缩容操作前记得先把文件系统卸载掉。
①检查文件系统的完整性。
[root@yxf]# e2fsck -f /dev/storage/vo
e2fsck 1.42.9 (28-Dec-2013)
Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Pass 5: Checking group summary information
/dev/storage/vo: 11/74000 files (0.0% non-contiguous), 15507/299008 blocks
②把逻辑卷vo的容量减小到120MB。
[root@yxf]# resize2fs /dev/storage/vo 120M
resize2fs 1.42.9 (28-Dec-2013)
Resizing the filesystem on /dev/storage/vo to 122880 (1k) blocks.
The filesystem on /dev/storage/vo is now 122880 blocks long.
[root@yxf]# lvreduce -L 120M /dev/storage/vo
WARNING: Reducing active logical volume to 120.00 MiB
THIS MAY DESTROY YOUR DATA (filesystem etc.)
Do you really want to reduce vo? [y/n]: y
Reducing logical volume vo to 120.00 MiB
Logical volume vo successfully resized
4、逻辑卷快照
LVM还具备有"快照卷"功能,该功能类似于虚拟机软件的还原时间点功能。例如,可以对某一个逻辑卷设备做一次快照,如果日后发现数据被改错了,就可以利用之前做好的快照卷进行覆盖还原。LVM的快照卷功能有两个特点:
快照卷的容量必须等同于逻辑卷的容量;
快照卷仅一次有效,一旦执行还原操作后则会被立即自动删除。
①使用-s参数生成一个快照卷,使用-L参数指定切割的大小。另外,还需要在命令后面写上是针对哪个逻辑卷执行的快照操作。
[root@yxf]# lvcreate -L 120M -s -n SNAP /dev/storage/vo
Logical volume "SNAP" created
②在逻辑卷所挂载的目录中创建一个100MB的垃圾文件,然后再查看快照卷的状态。可以发现存储空间占的用量上升了。
[root@yxf]# dd if=/dev/zero of=/linuxprobe/files count=1 bs=100M
1+0 records in
1+0 records out
104857600 bytes (105 MB) copied, 3.35432 s, 31.3 MB/s
③为了校验SNAP快照卷的效果,需要对逻辑卷进行快照还原操作。在此之前记得先卸载掉逻辑卷设备与目录的挂载。
[root@yxf]# umount /linuxprobe
[root@yxf]# lvconvert --merge /dev/storage/SNAP
Merging of volume SNAP started.
vo: Merged: 21.4%
vo: Merged: 100.0%
Merge of snapshot into logical volume vo has finished.
Logical volume "SNAP" successfully removed
④快照卷会被自动删除掉,并且刚刚在逻辑卷设备被执行快照操作后再创建出来的100MB的垃圾文件也被清除了。
5、删除逻辑卷
①取消逻辑卷与目录的挂载关联,删除配置文件中永久生效的设备参数。
②删除逻辑卷设备,需要输入y来确认操作。
[root@yxf]# lvremove /dev/storage/vo
Do you really want to remove active logical volume vo? [y/n]: y
Logical volume "vo" successfully removed
③删除卷组,此处只写卷组名称即可,不需要设备的绝对路径。
[root@yxf]# vgremove storage
Volume group "storage" successfully removed
④删除物理卷设备。
[root@yxf]# pvremove /dev/sdb /dev/sdc
Labels on physical volume "/dev/sdb" successfully wiped
Labels on physical volume "/dev/sdc" successfully wiped
以上是关于Raid与Lvm磁盘阵列的主要内容,如果未能解决你的问题,请参考以下文章