redis面试总结
Posted wcgstudy
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了redis面试总结相关的知识,希望对你有一定的参考价值。
1.项目中缓存是如何使用的?为什么要用缓存?缓存使用不当会造成什么后果?
面试题剖析
为什么要用缓存?
用缓存,主要有两个用途:高性能、高并发。
高性能
假设这么个场景,你有个操作,一个请求过来,吭哧吭哧你各种乱七八糟操作 mysql,半天查出来一个结果,耗时 600ms。但是这个结果可能接下来几个小时都不会变了,或者变了也可以不用立即反馈给用户。那么此时咋办?
缓存啊,折腾 600ms 查出来的结果,扔缓存里,一个 key 对应一个 value,下次再有人查,别走 mysql 折腾 600ms 了,直接从缓存里,通过一个 key 查出来一个 value,2ms 搞定。性能提升 300 倍。
就是说对于一些需要复杂操作耗时查出来的结果,且确定后面不怎么变化,但是有很多读请求,那么直接将查询出来的结果放在缓存中,后面直接读缓存就好。
高并发
mysql 这么重的数据库,压根儿设计不是让你玩儿高并发的,虽然也可以玩儿,但是天然支持不好。mysql 单机支撑到 2000QPS
也开始容易报警了。
所以要是你有个系统,高峰期一秒钟过来的请求有 1万,那一个 mysql 单机绝对会死掉。你这个时候就只能上缓存,把很多数据放缓存,别放 mysql。缓存功能简单,说白了就是 key-value
式操作,单机支撑的并发量轻松一秒几万十几万,支撑高并发 so easy。单机承载并发量是 mysql 单机的几十倍。
2.redis 和 memcached 有什么区别?redis 的线程模型是什么?为什么 redis 单线程却能支撑高并发?
考点分析
这个是问 redis 的时候,最基本的问题吧,redis 最基本的一个内部原理和特点,就是 redis 实际上是个单线程工作模型,你要是这个都不知道,那后面玩儿 redis 的时候,出了问题岂不是什么都不知道?
还有可能面试官会问问你 redis 和 memcached 的区别,但是 memcached 是早些年各大互联网公司常用的缓存方案,但是现在近几年基本都是 redis,没什么公司用 memcached 了。
面试题剖析
redis 和 memcached 有啥区别?
redis 支持复杂的数据结构
redis 相比 memcached 来说,拥有更多的数据结构,能支持更丰富的数据操作。如果需要缓存能够支持更复杂的结构和操作, redis 会是不错的选择。
redis 原生支持集群模式
在 redis3.x 版本中,便能支持 cluster 模式,而 memcached 没有原生的集群模式,需要依靠客户端来实现往集群中分片写入数据。
性能对比
由于 redis 只使用单核,而 memcached 可以使用多核,所以平均每一个核上 redis 在存储小数据时比 memcached 性能更高。而在 100k 以上的数据中,memcached 性能要高于 redis,虽然 redis 最近也在存储大数据的性能上进行优化,但是比起 memcached,还是稍有逊色。
redis 的线程模型
redis 内部使用文件事件处理器 file event handler
,这个文件事件处理器是单线程的,所以 redis 才叫做单线程的模型。它采用 IO 多路复用机制同时监听多个 socket,根据 socket 上的事件来选择对应的事件处理器进行处理。
文件事件处理器的结构包含 4 个部分:
- 多个 socket
- IO 多路复用程序
- 文件事件分派器
- 事件处理器(连接应答处理器、命令请求处理器、命令回复处理器)
多个 socket 可能会并发产生不同的操作,每个操作对应不同的文件事件,但是 IO 多路复用程序会监听多个 socket,会将 socket 产生的事件放入队列中排队,事件分派器每次从队列中取出一个事件,把该事件交给对应的事件处理器进行处理。
来看客户端与 redis 的一次通信过程:
客户端 socket01 向 redis 的 server socket 请求建立连接,此时 server socket 会产生一个 AE_READABLE
事件,IO 多路复用程序监听到 server socket 产生的事件后,将该事件压入队列中。文件事件分派器从队列中获取该事件,交给连接应答处理器。连接应答处理器会创建一个能与客户端通信的 socket01,并将该 socket01 的 AE_READABLE
事件与命令请求处理器关联。
假设此时客户端发送了一个 set key value
请求,此时 redis 中的 socket01 会产生 AE_READABLE
事件,IO 多路复用程序将事件压入队列,此时事件分派器从队列中获取到该事件,由于前面 socket01 的 AE_READABLE
事件已经与命令请求处理器关联,因此事件分派器将事件交给命令请求处理器来处理。命令请求处理器读取 socket01 的 key value
并在自己内存中完成 key value
的设置。操作完成后,它会将 socket01 的 AE_WRITABLE
事件与命令回复处理器关联。
如果此时客户端准备好接收返回结果了,那么 redis 中的 socket01 会产生一个 AE_WRITABLE
事件,同样压入队列中,事件分派器找到相关联的命令回复处理器,由命令回复处理器对 socket01 输入本次操作的一个结果,比如 ok
,之后解除 socket01 的 AE_WRITABLE
事件与命令回复处理器的关联。
这样便完成了一次通信。
为啥 redis 单线程模型也能效率这么高?
- 纯内存操作
- 核心是基于非阻塞的 IO 多路复用机制
- 单线程反而避免了多线程的频繁上下文切换问题
3.redis 都有哪些数据类型?分别在哪些场景下使用比较合适?
面试题剖析
redis 主要有以下几种数据类型:
- string
- hash
- list
- set
- sorted set
string
这是最简单的类型,就是普通的 set 和 get,做简单的 KV 缓存。
set college szu
hash
这个是类似 map 的一种结构,这个一般就是可以将结构化的数据,比如一个对象(前提是这个对象没嵌套其他的对象)给缓存在 redis 里,然后每次读写缓存的时候,可以就操作 hash 里的某个字段。
hset person name bingo hset person age 20 hset person id 1 hget person name person = "name": "bingo", "age": 20, "id": 1
list
list 是有序列表,这个可以玩儿出很多花样。
比如可以通过 list 存储一些列表型的数据结构,类似粉丝列表、文章的评论列表之类的东西。
比如可以通过 lrange 命令,读取某个闭区间内的元素,可以基于 list 实现分页查询,这个是很棒的一个功能,基于 redis 实现简单的高性能分页,可以做类似微博那种下拉不断分页的东西,性能高,就一页一页走。
# 0开始位置,-1结束位置,结束位置为-1时,表示列表的最后一个位置,即查看所有。 lrange mylist 0 -1
比如可以搞个简单的消息队列,从 list 头怼进去,从 list 尾巴那里弄出来。
lpush mylist 1 lpush mylist 2 lpush mylist 3 4 5 # 1 rpop mylist
set
set 是无序集合,自动去重。
直接基于 set 将系统里需要去重的数据扔进去,自动就给去重了,如果你需要对一些数据进行快速的全局去重,你当然也可以基于 jvm 内存里的 HashSet 进行去重,但是如果你的某个系统部署在多台机器上呢?得基于 redis 进行全局的 set 去重。
可以基于 set 玩儿交集、并集、差集的操作,比如交集吧,可以把两个人的粉丝列表整一个交集,看看俩人的共同好友是谁?对吧。
把两个大 V 的粉丝都放在两个 set 中,对两个 set 做交集。
#-------操作一个set------- # 添加元素 sadd mySet 1 # 查看全部元素 smembers mySet # 判断是否包含某个值 sismember mySet 3 # 删除某个/些元素 srem mySet 1 srem mySet 2 4 # 查看元素个数 scard mySet # 随机删除一个元素 spop mySet #-------操作多个set------- # 将一个set的元素移动到另外一个set smove yourSet mySet 2 # 求两set的交集 sinter yourSet mySet # 求两set的并集 sunion yourSet mySet # 求在yourSet中而不在mySet中的元素 sdiff yourSet mySet
sorted set
sorted set 是排序的 set,去重但可以排序,写进去的时候给一个分数,自动根据分数排序。
zadd board 85 zhangsan zadd board 72 lisi zadd board 96 wangwu zadd board 63 zhaoliu # 获取排名前三的用户(默认是升序,所以需要 rev 改为降序) zrevrange board 0 3 # 获取某用户的排名 zrank board zhaoliu
4.redis 的过期策略都有哪些?内存淘汰机制都有哪些?手写一下 LRU 代码实现?
考点分析
如果你连这个问题都不知道,上来就懵了,回答不出来,那线上你写代码的时候,想当然的认为写进 redis 的数据就一定会存在,后面导致系统各种 bug,谁来负责?
常见的有两个问题:
- 往 redis 写入的数据怎么没了?
可能有同学会遇到,在生产环境的 redis 经常会丢掉一些数据,写进去了,过一会儿可能就没了。我的天,同学,你问这个问题就说明 redis 你就没用对啊。redis 是缓存,你给当存储了是吧?
啥叫缓存?用内存当缓存。内存是无限的吗,内存是很宝贵而且是有限的,磁盘是廉价而且是大量的。可能一台机器就几十个 G 的内存,但是可以有几个 T 的硬盘空间。redis 主要是基于内存来进行高性能、高并发的读写操作的。
那既然内存是有限的,比如 redis 就只能用 10G,你要是往里面写了 20G 的数据,会咋办?当然会干掉 10G 的数据,然后就保留 10G 的数据了。那干掉哪些数据?保留哪些数据?当然是干掉不常用的数据,保留常用的数据了。
- 数据明明过期了,怎么还占用着内存?
这是由 redis 的过期策略来决定。
面试题剖析
redis 过期策略
redis 过期策略是:定期删除+惰性删除。
所谓定期删除,指的是 redis 默认是每隔 100ms 就随机抽取一些设置了过期时间的 key,检查其是否过期,如果过期就删除。
假设 redis 里放了 10w 个 key,都设置了过期时间,你每隔几百毫秒,就检查 10w 个 key,那 redis 基本上就死了,cpu 负载会很高的,消耗在你的检查过期 key 上了。注意,这里可不是每隔 100ms 就遍历所有的设置过期时间的 key,那样就是一场性能上的灾难。实际上 redis 是每隔 100ms 随机抽取一些 key 来检查和删除的。
但是问题是,定期删除可能会导致很多过期 key 到了时间并没有被删除掉,那咋整呢?所以就是惰性删除了。这就是说,在你获取某个 key 的时候,redis 会检查一下 ,这个 key 如果设置了过期时间那么是否过期了?如果过期了此时就会删除,不会给你返回任何东西。
但是实际上这还是有问题的,如果定期删除漏掉了很多过期 key,然后你也没及时去查,也就没走惰性删除,此时会怎么样?如果大量过期 key 堆积在内存里,导致 redis 内存块耗尽了,咋整?
答案是:走内存淘汰机制。
内存淘汰机制
redis 内存淘汰机制有以下几个:
- noeviction: 当内存不足以容纳新写入数据时,新写入操作会报错,这个一般没人用吧,实在是太恶心了。
- allkeys-lru:当内存不足以容纳新写入数据时,在键空间中,移除最近最少使用的 key(这个是最常用的)。
- allkeys-random:当内存不足以容纳新写入数据时,在键空间中,随机移除某个 key,这个一般没人用吧,为啥要随机,肯定是把最近最少使用的 key 给干掉啊。
- volatile-lru:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,移除最近最少使用的 key(这个一般不太合适)。
- volatile-random:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,随机移除某个 key。
- volatile-ttl:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,有更早过期时间的 key 优先移除。
手写一个 LRU 算法
你可以现场手写最原始的 LRU 算法,那个代码量太大了,似乎不太现实。
不求自己纯手工从底层开始打造出自己的 LRU,但是起码要知道如何利用已有的 JDK 数据结构实现一个 Java 版的 LRU。
class LRUCache<K, V> extends LinkedHashMap<K, V> private final int CACHE_SIZE; /** * 传递进来最多能缓存多少数据 * * @param cacheSize 缓存大小 */ public LRUCache(int cacheSize) // true 表示让 linkedHashMap 按照访问顺序来进行排序,最近访问的放在头部,最老访问的放在尾部。 super((int) Math.ceil(cacheSize / 0.75) + 1, 0.75f, true); CACHE_SIZE = cacheSize; @Override protected boolean removeEldestEntry(Map.Entry<K, V> eldest) // 当 map中的数据量大于指定的缓存个数的时候,就自动删除最老的数据。 return size() > CACHE_SIZE;
5.如何保证 redis 的高并发和高可用?redis 的主从复制原理能介绍一下么?redis 的哨兵原理能介绍一下么?
考点分析
其实问这个问题,主要是考考你,redis 单机能承载多高并发?如果单机扛不住如何扩容扛更多的并发?redis 会不会挂?既然 redis 会挂那怎么保证 redis 是高可用的?
其实针对的都是项目中你肯定要考虑的一些问题,如果你没考虑过,那确实你对生产系统中的问题思考太少。
面试题剖析
如果你用 redis 缓存技术的话,肯定要考虑如何用 redis 来加多台机器,保证 redis 是高并发的,还有就是如何让 redis 保证自己不是挂掉以后就直接死掉了,即 redis 高可用。
redis 实现高并发主要依靠主从架构,一主多从,一般来说,很多项目其实就足够了,单主用来写入数据,单机几万 QPS,多从用来查询数据,多个从实例可以提供每秒 10w 的 QPS。
如果想要在实现高并发的同时,容纳大量的数据,那么就需要 redis 集群,使用 redis 集群之后,可以提供每秒几十万的读写并发。
redis 高可用,如果是做主从架构部署,那么加上哨兵就可以了,就可以实现,任何一个实例宕机,可以进行主备切换。
6.redis 的持久化有哪几种方式?不同的持久化机制都有什么优缺点?持久化机制具体底层是如何实现的?
考点分析
redis 如果仅仅只是将数据缓存在内存里面,如果 redis 宕机了再重启,内存里的数据就全部都弄丢了啊。你必须得用 redis 的持久化机制,将数据写入内存的同时,异步的慢慢的将数据写入磁盘文件里,进行持久化。
如果 redis 宕机重启,自动从磁盘上加载之前持久化的一些数据就可以了,也许会丢失少许数据,但是至少不会将所有数据都弄丢。
这个其实一样,针对的都是 redis 的生产环境可能遇到的一些问题,就是 redis 要是挂了再重启,内存里的数据不就全丢了?能不能重启的时候把数据给恢复了?
面试题剖析
持久化主要是做灾难恢复、数据恢复,也可以归类到高可用的一个环节中去,比如你 redis 整个挂了,然后 redis 就不可用了,你要做的事情就是让 redis 变得可用,尽快变得可用。
重启 redis,尽快让它堆外提供服务,如果没做数据备份,这时候 redis 启动了,也不可用啊,数据都没了。
很可能说,大量的请求过来,缓存全部无法命中,在 redis 里根本找不到数据,这个时候就死定了,出现缓存雪崩问题。所有请求没有在 redis 命中,就会去 mysql 数据库这种数据源头中去找,一下子 mysql 承接高并发,然后就挂了...
如果你把 redis 持久化做好,备份和恢复方案做到企业级的程度,那么即使你的 redis 故障了,也可以通过备份数据,快速恢复,一旦恢复立即对外提供服务。
redis 持久化的两种方式
- RDB:RDB 持久化机制,是对 redis 中的数据执行周期性的持久化。
- AOF:AOF 机制对每条写入命令作为日志,以
append-only
的模式写入一个日志文件中,在 redis 重启的时候,可以通过回放 AOF 日志中的写入指令来重新构建整个数据集。
通过 RDB 或 AOF,都可以将 redis 内存中的数据给持久化到磁盘上面来,然后可以将这些数据备份到别的地方去,比如说阿里云等云服务。
如果 redis 挂了,服务器上的内存和磁盘上的数据都丢了,可以从云服务上拷贝回来之前的数据,放到指定的目录中,然后重新启动 redis,redis 就会自动根据持久化数据文件中的数据,去恢复内存中的数据,继续对外提供服务。
如果同时使用 RDB 和 AOF 两种持久化机制,那么在 redis 重启的时候,会使用 AOF 来重新构建数据,因为 AOF 中的数据更加完整。
RDB 优缺点
-
RDB会生成多个数据文件,每个数据文件都代表了某一个时刻中 redis 的数据,这种多个数据文件的方式,非常适合做冷备,可以将这种完整的数据文件发送到一些远程的安全存储上去,比如说 Amazon 的 S3 云服务上去,在国内可以是阿里云的 ODPS 分布式存储上,以预定好的备份策略来定期备份redis中的数据。
-
RDB 对 redis 对外提供的读写服务,影响非常小,可以让 redis 保持高性能,因为 redis 主进程只需要 fork 一个子进程,让子进程执行磁盘 IO 操作来进行 RDB 持久化即可。
-
相对于 AOF 持久化机制来说,直接基于 RDB 数据文件来重启和恢复 redis 进程,更加快速。
-
如果想要在 redis 故障时,尽可能少的丢失数据,那么 RDB 没有 AOF 好。一般来说,RDB 数据快照文件,都是每隔 5 分钟,或者更长时间生成一次,这个时候就得接受一旦 redis 进程宕机,那么会丢失最近 5 分钟的数据。
-
RDB 每次在 fork 子进程来执行 RDB 快照数据文件生成的时候,如果数据文件特别大,可能会导致对客户端提供的服务暂停数毫秒,或者甚至数秒。
AOF 优缺点
- AOF 可以更好的保护数据不丢失,一般 AOF 会每隔 1 秒,通过一个后台线程执行一次
fsync
操作,最多丢失 1 秒钟的数据。 - AOF 日志文件以
append-only
模式写入,所以没有任何磁盘寻址的开销,写入性能非常高,而且文件不容易破损,即使文件尾部破损,也很容易修复。 - AOF 日志文件即使过大的时候,出现后台重写操作,也不会影响客户端的读写。因为在
rewrite
log 的时候,会对其中的指导进行压缩,创建出一份需要恢复数据的最小日志出来。再创建新日志文件的时候,老的日志文件还是照常写入。当新的 merge 后的日志文件 ready 的时候,再交换新老日志文件即可。 - AOF 日志文件的命令通过非常可读的方式进行记录,这个特性非常适合做灾难性的误删除的紧急恢复。比如某人不小心用
flushall
命令清空了所有数据,只要这个时候后台rewrite
还没有发生,那么就可以立即拷贝 AOF 文件,将最后一条flushall
命令给删了,然后再将该AOF
文件放回去,就可以通过恢复机制,自动恢复所有数据。 - 对于同一份数据来说,AOF 日志文件通常比 RDB 数据快照文件更大。
- AOF 开启后,支持的写 QPS 会比 RDB 支持的写 QPS 低,因为 AOF 一般会配置成每秒
fsync
一次日志文件,当然,每秒一次fsync
,性能也还是很高的。(如果实时写入,那么 QPS 会大降,redis 性能会大大降低) - 以前 AOF 发生过 bug,就是通过 AOF 记录的日志,进行数据恢复的时候,没有恢复一模一样的数据出来。所以说,类似 AOF 这种较为复杂的基于命令日志/merge/回放的方式,比基于 RDB 每次持久化一份完整的数据快照文件的方式,更加脆弱一些,容易有 bug。不过 AOF 就是为了避免 rewrite 过程导致的 bug,因此每次 rewrite 并不是基于旧的指令日志进行 merge 的,而是基于当时内存中的数据进行指令的重新构建,这样健壮性会好很多。
RDB和AOF到底该如何选择
- 不要仅仅使用 RDB,因为那样会导致你丢失很多数据;
- 也不要仅仅使用 AOF,因为那样有两个问题:第一,你通过 AOF 做冷备,没有 RDB 做冷备来的恢复速度更快;第二,RDB 每次简单粗暴生成数据快照,更加健壮,可以避免 AOF 这种复杂的备份和恢复机制的 bug;
- redis 支持同时开启开启两种持久化方式,我们可以综合使用 AOF 和 RDB 两种持久化机制,用 AOF 来保证数据不丢失,作为数据恢复的第一选择; 用 RDB 来做不同程度的冷备,在 AOF 文件都丢失或损坏不可用的时候,还可以使用 RDB 来进行快速的数据恢复。
以上是关于redis面试总结的主要内容,如果未能解决你的问题,请参考以下文章