Point-wise Mutual Information
Posted fengyubo
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Point-wise Mutual Information相关的知识,希望对你有一定的参考价值。
Point-wise Mutual Information
(Yao, et al 2019) reclaimed a clear description of Point-wise Mutual Information as below:
\[
PMI(i, j) = \log \fracp(i,j)p(i)p(j) \p(i, j) = \frac\#(i,j)\#W \p(i) = \frac\#(i)\#W
\]
where \(\#(i)\) is the number of sliding windows in a corpus hat contain word \(i\)
where \(\#(i,j)\) is the number of sliding windows that contain both word \(i\) and \(j\)
where \(\#W\) is the total number of sliding windows in the corpus.
(Levy, et al 2014) simplified PMI formula as below:
\[
PMI(i,j) = \log\frac\#(i,j)\#W\#(i)\#(j)
\]
Obviously, \(\#W\) is a constant if we fixed slide window size and corpus, hence we can further simplify the formula as below:
\[
PMI(i, j) = \log\frac\#(i,j)\#(i)\#(j)
\]
References
Liang Yao, et al, 2019. Graph Convolutional Networks for Text Classification. AAAI
Omer Levy, et al, 2014. NeuralWord Embedding as Implicit Matrix Factorization. NIPS
以上是关于Point-wise Mutual Information的主要内容,如果未能解决你的问题,请参考以下文章
Mutual information and Normalized Mutual information
原创NSURLSession HTTPS Mutual Authentication