SM3国密算法标准中两个实例的实现

Posted xpren

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了SM3国密算法标准中两个实例的实现相关的知识,希望对你有一定的参考价值。

来源于CSDN博客:https://blog.csdn.net/ErErFei/article/details/50998162
代码新增内容:在原博客的基础上,整合了各个类的方法,同时增添了SM3国密标准中的第二个案例的验证,并尝试将原代码中的缓冲区长度修改为64*2,本代码作者是在命令行里面运行通过的,未曾在eclipse环境中运行。如有运行问题,请各位能够反馈,互相学习;

public class ren_SM3

/**IV为256比特初始值,32个字节,修饰为静态最终变量,不可改变,比如0x80值(128)范围超过byte表示范围(-128~127),所以需要强制转换*/
private static final byte[] IV = 0x73, (byte)0x80, 0x16, 0x6f, 0x49, 0x14, (byte) 0xb2, (byte) 0xb9, 0x17, 0x24, 0x42, (byte) 0xd7, (byte) 0xda, (byte) 0x8a, 0x06, 0x00, (byte) 0xa9, 0x6f, 0x30, (byte) 0xbc, (byte) 0x16, 0x31, 0x38, (byte) 0xaa, (byte) 0xe3, (byte) 0x8d, (byte) 0xee, 0x4d, (byte) 0xb0, (byte)0xfb, (byte)0x0e, 0x4e ;

/**由于IV不可改变,而在64次迭代过程中需要一个不断改变的V,所以重新定义一个。*/
private byte[] V= IV.clone();

/** SM3分组长度 */
private static final int BLOCK_LENGTH = 64;

/** 缓冲区长度 */
private static final int BUFFER_LENGTH = BLOCK_LENGTH * 2;

/*缓冲区偏移量*/
private int xBufOff;

/*缓冲区,缓冲区长度是64,这个缓冲区指的什么?指的明文进入内存后,算法中要求需要将消息进行512比特分组,
然后对每组进行迭代,由于对消息原文是不能有改变的,所以需要将分组后的消息进行复制一份。*/
private byte[] xBuf = new byte[BUFFER_LENGTH];

private int cntBlock = 0;//用于记录明文分组的个数,计算消息长度时需要用到。

public static int[] Tj = new int[64];
 
static

    for (int i = 0; i < 16; i++)
    
        Tj[i] = 0x79cc4519;
    
 
    for (int i = 16; i < 64; i++)
    
        Tj[i] = 0x7a879d8a;
    

/*
*@param in明文输入缓冲区
*@param inOff明文输入缓冲区偏移量
*@param len明文输入长度
*/
public void update(byte[] in,int inOff)

    
    int inputLen = in.length;//明文的长度
    int dPos = inOff;//明文输入缓冲区偏移量,一开始是0
    if(BUFFER_LENGTH<inputLen)//如果缓冲区长度小于明文长度
    
        System.arraycopy(in,dPos,xBuf,0,BUFFER_LENGTH);
        inputLen =  inputLen - BUFFER_LENGTH;//明文输入长度减去进入缓冲区后剩下的长度
        dPos = dPos+ BUFFER_LENGTH;
        doUpdate();
        while(inputLen>BUFFER_LENGTH)
        
            System.arraycopy(in,dPos,xBuf,0,BUFFER_LENGTH);
            inputLen = inputLen - BUFFER_LENGTH;
            dPos = dPos+BUFFER_LENGTH;
            doUpdate();
        
    
    if(inputLen>0)
    
        System.arraycopy(in,dPos,xBuf,0,inputLen);
        xBufOff = inputLen;
    

public void doUpdate()//将缓冲区的内容复制到一份新的字节数组中。然后对字节数组作用。

    byte [] B = new byte[BLOCK_LENGTH];
    for(int i=0;i<BUFFER_LENGTH;i=i+BLOCK_LENGTH)
        
            System.arraycopy(xBuf,i,B,0,BLOCK_LENGTH);
            doHash(B);
        
    xBufOff=0;

private void doHash(byte[] B)

    V = CF(V,B);
    //System.arraycopy(tmp,0,V,0,V.length);
        
    cntBlock++;

private byte[] CF(byte[] V,byte[] B)

    int[] v,b;
    v = convert(V);
    b = convert(B);
    return convert(CF(v,b));

private int[] convert(byte[] arr)

    int[] out = new int[arr.length/4];
    byte[] tmp = new byte[4];
    for(int i =0;i<arr.length;i+=4)
        
            System.arraycopy(arr,i,tmp,0,4);
            out[i/4]=bigEndianByteToInt(tmp);
        
        return out;

private int bigEndianByteToInt(byte[] in)

    int num = 0;
    int temp;
    temp = (0x000000ff & (in[3])) << 0;
    num = num | temp;
    temp = (0x000000ff & (in[2])) << 8;
    num = num | temp;
    temp = (0x000000ff & (in[1])) << 16;
    num = num | temp;
    temp = (0x000000ff & (in[0])) << 24;
    num = num | temp;
    return num;

public int[] CF(int[] v,int[] n)

    int a,b,c,d,e,f,g,h;
    int ss1,ss2,tt1,tt2;
    a = v[0];
    b=v[1];
    c=v[2];
    d=v[3];
    e=v[4];
    f=v[5];
    g=v[6];
    h=v[7];
    System.out.println(getHexString(bigEndianIntToByte(a))+getHexString(bigEndianIntToByte(b))+" "
                      +getHexString(bigEndianIntToByte(c))+getHexString(bigEndianIntToByte(d))+" "
                      +getHexString(bigEndianIntToByte(e))+getHexString(bigEndianIntToByte(f))+" "
                      +getHexString(bigEndianIntToByte(g))+getHexString(bigEndianIntToByte(h)));
    int[][]arr = expand(n);
    int []W=arr[0];
    int []W1 = arr[1];
    System.out.println("扩展后W[]的值为:");
    for(int j =0;j<68;j++)
    
        System.out.print(getHexString(bigEndianIntToByte(W[j]))+" ");
        if((j+1)%8==0)
            System.out.println();
    
    System.out.println();
    System.out.println("扩展后W1[]的值为:");
    for(int j =0;j<64;j++)
    
        System.out.print(getHexString(bigEndianIntToByte(W[j]))+" ");
        if((j+1)%8==0)
            System.out.println();
    
    System.out.println();
    for(int j =0;j<64;j++)
    
        ss1 = bitCycleLeft(a,12)+e+bitCycleLeft(Tj[j],j%32);
        ss1 = bitCycleLeft(ss1,7);
        ss2 = ss1^bitCycleLeft(a,12);
        tt1 = FFj(a,b,c,j)+d+ss2+W1[j];
        tt2 = GGj(e,f,g,j)+h+ss1+W[j];
        d=c;
        c = bitCycleLeft(b,9);
        b=a;
        a = tt1;
        h=g;
        g=bitCycleLeft(f,19);
        f=e;
        e=P0(tt2);
        System.out.println(j+":  "+getHexString(bigEndianIntToByte(a))+getHexString(bigEndianIntToByte(b))+" "
                          +getHexString(bigEndianIntToByte(c))+getHexString(bigEndianIntToByte(d))+" "
                          +getHexString(bigEndianIntToByte(e))+getHexString(bigEndianIntToByte(f))+" "
                          +getHexString(bigEndianIntToByte(g))+getHexString(bigEndianIntToByte(h)));
    
    int []out = new int[8];
    out[0] = a^v[0];
    out[1] = b^v[1];
    out[2] = c^v[2];
    out[3]= d^v[3];
    out[4] = e^v[4];
    out[5] = f^v[5];
    out[6] = g^v[6];
    out[7] = h^v[7];
    return out;

public int[][] expand(int[] b)

    int []W =new int[68];
    int[] W1 = new int[64];
    for(int i=0;i<16;i++)
    
        W[i] = b[i];
    
    for(int i =16;i<68;i++)
    
    W[i] = P1(W[i-16]^W[i-9]^bitCycleLeft(W[i-3],15))^bitCycleLeft(W[i-13],7)^W[i-6];
    
    for(int i =0;i<64;i++)
    
        W1[i] = W[i]^W[i+4];
    
    int[][] arr = new int[][]W,W1;
    return arr;

public int bitCycleLeft(int target,int bitLen)

    byte[] tmp = bigEndianIntToByte(target);
    int byteLen = bitLen/8;
    int len = bitLen%8;
    if(byteLen>0)
    
        tmp = byteCycleLeft(tmp,byteLen);
    
    if(len>0)
    
        tmp = bitSmall8CycleLeft(tmp,len);
    
    return bigEndianByteToInt(tmp);

public byte[] bigEndianIntToByte(int n)

    byte[] tmp = new byte[4];
    tmp[3] = (byte)(n>>0);
    tmp[2] = (byte)(n>>8);
    tmp[1] = (byte)(n>>16);
    tmp[0] = (byte)(n>>24);
    return tmp;
   
public byte[] byteCycleLeft(byte[] in,int n)

    byte[] tmp = new byte[in.length];
    System.arraycopy(in, n, tmp, 0, in.length - n);
    System.arraycopy(in, 0, tmp, in.length - n, n);
    return tmp;

public byte[] bitSmall8CycleLeft(byte[] in,int n)

    byte[] tmp = new byte[in.length];
    int t1, t2, t3;
    for(int j=0;j<tmp.length;j++)
    
        t1 = (byte)((in[j])<<n);
        t2 = (byte)(((in[(j+1)%tmp.length])&0x000000ff)>>(8-n));
        t3 = (byte)(t1|t2);
        tmp[j]=(byte)t3;
    
    return tmp;

public int FFj(int a,int b ,int c,int j)

    if(j>=0&&j<=15)
    
        return a^b^c;
    
    else
    
        return (a&b)|(a&c)|(b&c);
    

public int GGj(int a,int b ,int c,int j)

    if(j>=0&&j<=15)
    
        return a^b^c;
    
    else
    
        return (a&b)|(~a&c);
    

public int P0(int a)

    int tmp = a^bitCycleLeft(a,9)^bitCycleLeft(a,17);
    return tmp;

public int P1(int a)

    int tmp = a^bitCycleLeft(a,15)^bitCycleLeft(a,23);
    return tmp;

public byte[] convert(int[] v)

    byte[] out = new byte[v.length*4];
    int[] in = new int[v.length];
    for(int i=0;i<v.length;i++)
    
        System.arraycopy(v,0,in,0,v.length);
        out[4*i+3] = (byte)(in[i]>>0);
        out[4*i+2] = (byte)(in[i]>>8);
        out[4*i+1] = (byte)(in[i]>>16);
        out[4*i+0] = (byte)(in[i]>>24);
    
    return out;

public byte[] doFinal()

    byte[] B= new byte[BLOCK_LENGTH];
    byte[] buffer = new byte[xBufOff];
    System.arraycopy(xBuf,0,buffer,0,buffer.length);
    byte[] tmp = padding(buffer,cntBlock);
    for(int i=0;i<tmp.length;i+=64)//此处填充后tmp长度可能为64*2,也可能为64
    
        System.arraycopy(tmp,i,B,0,B.length);
        doHash(B);
    
    
    return V;

/*
*@param in需要填充的最后一组字节数组
*@param blen消息的分组次数
*return 填充后的字节数组,注意当填充前数组为64字节时,填充后数组会比原来多一组。
*/
public byte[] padding(byte[] in,int blen)

    long l= blen*BUFFER_LENGTH*8+in.length*8;
    int k = 448-(in.length*8+8)%512;
    if(k<0)
    
        k= 960-(in.length*8+8)%512;
    
    byte[] padd=new byte[k/8+1];
    padd[0]=(byte)0x80;
    byte[] out = new byte[in.length+k/8+1+64/8];
    int pos = 0;
    System.arraycopy(in,0,out,pos,in.length);
    pos = pos+in.length;
    System.arraycopy(padd,0,out,pos,k/8+1);
    pos = pos+k/8+1;
    byte[] tmp = longToBytes(l);
    System.arraycopy(tmp,0,out,pos,64/8);
    return out;

public byte[] longToBytes(long n)

    byte[] bytes = new byte[8];
    for(int i=0;i<8;i++)
    
        bytes[7-i] = (byte)(0xff&(n>>(i*8)));
    
    return bytes;

public String getHexString(byte[] bt)

    String str = "";
    for(int i = 0;i<bt.length;i++)
    
        
        str+=String.format("%02x",bt[i]&0xff);
        if(i%4==3)
            str+=" ";
    
    return str;

public static void main(String[] args)

            byte[] md = new byte[32];
    byte[] msg1 = 0x61,0x62,0x63;
            ren1_SM3 sm3 = new ren1_SM3();
            sm3.update(msg1, 0);
            md = sm3.doFinal();
    System.out.println("第一个例子的摘要值为"+sm3.getHexString(md));
    byte[] msg2 = 0x61,0x62,0x63,0x64,0x61,0x62,0x63,0x64,0x61,0x62,0x63,0x64,0x61,0x62,0x63,0x64,
                    0x61,0x62,0x63,0x64,0x61,0x62,0x63,0x64,0x61,0x62,0x63,0x64,0x61,0x62,0x63,0x64,
                    0x61,0x62,0x63,0x64,0x61,0x62,0x63,0x64,0x61,0x62,0x63,0x64,0x61,0x62,0x63,0x64,
                    0x61,0x62,0x63,0x64,0x61,0x62,0x63,0x64,0x61,0x62,0x63,0x64,0x61,0x62,0x63,0x64;
    ren1_SM3 sm3_1 = new ren1_SM3();
    sm3_1.update(msg2, 0);
            md = sm3_1.doFinal();
    System.out.println("第二个例子的摘要值为"+sm3_1.getHexString(md));

以上是关于SM3国密算法标准中两个实例的实现的主要内容,如果未能解决你的问题,请参考以下文章

php国密SM3签名算法

国密算法 SM2 SM3 SM4分别用作什么

SM系列国密算法(转)

国密gmssl介绍(SM2SM3SM4算法)

提供使用国密算法的MySQL

提供使用国密算法的MySQL