使用data_flow_ops构造batch数据集
Posted my-love-is-python
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了使用data_flow_ops构造batch数据集相关的知识,希望对你有一定的参考价值。
1. tf.unstack(number, axis=0) 表示对数据进行拆分
import tensorflow as tf import numpy as np data = np.array([[1, 2, 3], [2, 3, 4], [4, 5, 6]]) filenames = tf.unstack(data) #表示输入的数据 with tf.Session() as sess: for filename in filenames: print(sess.run(filename))
# [1, 2, 3]
# [4, 5, 6]
# [7, 8, 9]
对数据进行合理的解读
import tensorflow as tf from tensorflow.python.ops import data_flow_ops import numpy as np # 构造初始的数据 image_paths_placeholder = tf.placeholder(tf.string, shape=(None, 3), name=‘image_path‘) label_paths_placeholder = tf.placeholder(tf.int32, shape=(None, 3), name=‘labels‘) # 构造输入的队列 input_queue = data_flow_ops.FIFOQueue(capacity=3, dtypes=[tf.string, tf.int32], shapes=([3, ], [3, ]), shared_name=None, name=None) # 将数据放入 enqueue_op = input_queue.enqueue_many([image_paths_placeholder, label_paths_placeholder]) # 进行变量初始化 init = tf.global_variables_initializer() X = np.array([[‘1‘, ‘2‘, ‘3‘], [‘4‘, ‘5‘, ‘6‘], [‘7‘, ‘8‘, ‘9‘]]) Y = np.array([[1, 1, 1], [2, 2, 2], [3, 3, 3]]) filename_labels = [] with tf.Session() as sess: # 将数据进行打包输出 filenames, labels = input_queue.dequeue() # print(sess.run(filenames)) images = [] for filename in tf.unstack(filenames): # 将数据集按照axis=0进行拆分 images.append(filename) # 将数据进行拆分, 这里可以对图片进行处理 # print(sess.run(filename)) filename_labels.append([images, labels]) # 将图片和标签进行添加 # # # 使用图片和标签构造batch_size数据集 image_batch, label_batch = tf.train.batch_join( filename_labels, batch_size=1, shapes=[(), ()], enqueue_many=True, capacity= 4 * 10, allow_smaller_final_batch=True ) image_batch = tf.identity(image_batch, ‘image_batch‘) enqueue_op.run(feed_dict=image_paths_placeholder: X, label_paths_placeholder: Y) x = sess.run([image_batch]) print(1) # print(sess.run(image_batch)) # 将数据进行输入
以上是关于使用data_flow_ops构造batch数据集的主要内容,如果未能解决你的问题,请参考以下文章
Transformer代码详解(-)-从数据处理到嵌入包含数据集可构造/数据嵌入和位置嵌入的详解
Transformer代码详解(-)-从数据处理到嵌入包含数据集可构造/数据嵌入和位置嵌入的详解
Transformer代码详解(-)-从数据处理到嵌入包含数据集可构造/数据嵌入和位置嵌入的详解
Transformer代码详解(-)-从数据处理到嵌入包含数据集可构造/数据嵌入和位置嵌入的详解
TF之LSTM/GRU:基于tensorflow框架对boston房价数据集分别利用LSTMGRU算法(batch_size调优对比)实现房价回归预测案例