第60届IMO 第5题

Posted lau1997

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了第60届IMO 第5题相关的知识,希望对你有一定的参考价值。


题目
 
巴斯银行发行的硬币在一面上铸有H,在另一面上铸有T,哈利有枚这样的硬币并将这些硬币从左至
右排成一行,他反复地进行如下操作:如果恰有k(>0)枚硬币H面朝上,则他将从左至右的第k枚硬币
翻转;如果所有硬币都是T面朝上则停止操作,例如:当n=3,并且初始状态是THT,则操作过程为
THT→HHT→HTT→TTT,总共进行了三次操作后停止

证明:对每个初始状态,哈利总在有限次操作后停止

解答
 
将问题转化为:H的个数总会在有限次操作后-1
设最右端的H坐标为x,易知x>=k
当x=k时,前x个全为H,后面全为T,易知经过x次操作后,变为全T
当x>k时,分为两种情况
1)当第k个为H时,H翻转变为T,H个数-1
2)当第k个为T时,T翻转变为H,H个数+1,向右走,因为第k到第x(包含x)必然有H,设第k个右侧第一个H坐标为k+a,则k到k+a全是T,因为只要是T就会翻转变为H,又会往右走,所以会一直向右走,直到遇见右侧第一个H(坐标k+a),之后H变为T,H的个数-1,向左走,又因为此时从k到k+a-1,全已经翻转变为了H,所以当K+a的H变为T之后向左走又会导致左边的H变为T,H的个数又减少,又会向左走,直到回到坐标k,又由于k为H,所以H-1,H的个数变为k-1
 
综上所述,任何情况都会经过有限步使H个数-1,所以任何情况都会经过有限步使H个数变为0即全为T,即总会经过有限次操作后停止。
 

以上是关于第60届IMO 第5题的主要内容,如果未能解决你的问题,请参考以下文章

IMO 1977 第 2 题探析

湖南省第6届程序大赛第5题

bzoj4915 简单的数字题

第 46 届国际大学生程序设计竞赛(ICPC)亚洲区域赛(南京),签到题5题

第 46 届国际大学生程序设计竞赛(ICPC)亚洲区域赛(南京),签到题5题

第 45 届国际大学生程序设计竞赛(ICPC)亚洲区域赛(银川),签到题5题