CCF-CSP题解 201703-4 地铁修建

Posted acboyty

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了CCF-CSP题解 201703-4 地铁修建相关的知识,希望对你有一定的参考价值。

求1-n最长边最小的路径。

最短路变形。dis值向后延申的方式是:\[dis[j]=min(dis[j],max(dis[i],w(i,j))\]

显然满足dijkstra贪心的选择方式。spfa也当然可以用。

写上三种方式,就当是模板好了。

spfa

复杂度:\(O(kE)/O(VE)\)

spfa的主要思想是不断松弛。注意spfa的更新策略,先更新\(dis\)值,再根据\(vis\)判断是否丢到\(queue\)中。

#include <bits/stdc++.h>
const int maxn = 100000;
const int maxm = 200000;

using namespace std;

int n, m;

int to[maxm * 2 + 10];
int w[maxm * 2 + 10];
int nex[maxm * 2 + 10];
int head[maxn + 10], cnt = 0;

void addEdge(int a, int b, int c)

    to[cnt] = b; w[cnt] = c;
    nex[cnt] = head[a]; head[a] = cnt++;
    to[cnt] = a; w[cnt] = c;
    nex[cnt] = head[b]; head[b] = cnt++;


int vis[maxn + 10];
int dis[maxn + 10];

void spfa()

    queue<int> q;
    dis[1] = 0;
    q.push(1);
    vis[1] = 1;
    while (!q.empty())
    
        int x = q.front(); q.pop();
        vis[x] = 0;
        // printf("current node: %d %d\n", x, dis[x]);
        for (int i = head[x]; i != -1; i = nex[i])
        
            int l = to[i];
            if (max(dis[x], w[i]) < dis[l])
            
                dis[l] = max(dis[x], w[i]);
                if (!vis[l])
                
                    q.push(l);
                    vis[l] = 1;
                
            
        
    


int main()

    scanf("%d%d", &n, &m);

    memset(head, -1, sizeof(head));
    for (int i = 1, a, b, c; i <= m; i++)
    
        scanf("%d%d%d", &a, &b, &c);
        addEdge(a, b, c);
    

    memset(vis, 0, sizeof(vis));
    memset(dis, 0x3f, sizeof(dis));

    spfa();

    printf("%d\n", dis[n]);

    return 0;

dijkstra

会超时。

复杂度:\(O(V^2)\)

dijkstra的主要思想是一共\(V\)次贪心的选择当前未确定点中\(dis\)值最小的那一个确定。

#include <bits/stdc++.h>
const int inf = 0x3f3f3f3f;
const int maxn = 100000;
const int maxm = 200000;

using namespace std;

int n, m;

int to[maxm * 2 + 10];
int w[maxm * 2 + 10];
int nex[maxm * 2 + 10];
int head[maxn + 10], cnt = 0;

void addEdge(int a, int b, int c)

    to[cnt] = b; w[cnt] = c;
    nex[cnt] = head[a]; head[a] = cnt++;
    to[cnt] = a; w[cnt] = c;
    nex[cnt] = head[b]; head[b] = cnt++;


int done[maxn + 10];
int dis[maxn + 10];

void dijkstra()

    dis[1] = 0;
    for (int i = 1; i <= n; i++)
    
        int x = 0, mmin = inf;
        for (int j = 1; j <= n; j++)
        
            if (!done[j] && dis[j] < mmin)
                mmin = dis[x = j];
        
        done[x] = 1;
        for (int j = head[x]; j != -1; j = nex[j])
        
            int l = to[j];
            dis[l] = min(dis[l], max(dis[x], w[j]));
        
    


int main()

    scanf("%d%d", &n, &m);

    memset(head, -1, sizeof(head));
    for (int i = 1, a, b, c; i <= m; i++)
    
        scanf("%d%d%d", &a, &b, &c);
        addEdge(a, b, c);
    

    memset(done, 0, sizeof(done));
    memset(dis, 0x3f, sizeof(dis));

    dijkstra();

    printf("%d\n", dis[n]);

    return 0;

heap_dijkstra

复杂度(stl优先队列实现,由于每条边最多被访问一次,堆中最多会有\(E\)个节点):\(O(ElogE)\),当图趋于完全图时,复杂度趋于\(O(V^2logV)\),应当使用一般实现的dijkstra算法。

堆优化dijkstra,主要思想是利用堆加速每一次值最小(未确定)的点的选择。实际实现略有不同,所以复杂度并非\(O(VlogV)\)

#include <bits/stdc++.h>
const int inf = 0x3f3f3f3f;
const int maxn = 100000;
const int maxm = 200000;

using namespace std;

int n, m;

int to[maxm * 2 + 10];
int w[maxm * 2 + 10];
int nex[maxm * 2 + 10];
int head[maxn + 10], cnt = 0;

void addEdge(int a, int b, int c)

    to[cnt] = b; w[cnt] = c;
    nex[cnt] = head[a]; head[a] = cnt++;
    to[cnt] = a; w[cnt] = c;
    nex[cnt] = head[b]; head[b] = cnt++;


struct tNode

    int d, u; // estimated dis, id of vertex
    tNode(int dd, int uu): d(dd), u(uu)
    bool operator < (const tNode &y) const
    
        return d > y.d;
    
;

int done[maxn + 10];
int dis[maxn + 10];

void heap_dijkstra()

    priority_queue<tNode> q;
    dis[1] = 0;
    q.push(tNode(0, 1));
    while (!q.empty())
    
        tNode x = q.top(); q.pop();
        int u = x.u;
        if (done[u])
            continue;
        done[u] = 1;
        for (int i = head[u]; i != -1; i = nex[i])
        
            int l = to[i];
            if (dis[l] > max(dis[u], w[i]))
            
                dis[l] = max(dis[u], w[i]);
                q.push(tNode(dis[l], l));
            
        
    


int main()

    scanf("%d%d", &n, &m);

    memset(head, -1, sizeof(head));
    for (int i = 1, a, b, c; i <= m; i++)
    
        scanf("%d%d%d", &a, &b, &c);
        addEdge(a, b, c);
    

    memset(done, 0, sizeof(done));
    memset(dis, 0x3f, sizeof(dis));

    heap_dijkstra();

    printf("%d\n", dis[n]);

    return 0;

以上是关于CCF-CSP题解 201703-4 地铁修建的主要内容,如果未能解决你的问题,请参考以下文章

201703-4 地铁修建

CSP 201703-4 地铁修建最小生成树+并查集

CSP 201703-4 地铁修建 python 最小生成树,并查集

ccf-201703-4-地铁修建

CCF201703-4 地铁修建(100分)Kruskal算法+BFS+最短路

CCF 201703-4 地铁修建(最小生成树)