完全高精度
Posted cadcadcad
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了完全高精度相关的知识,希望对你有一定的参考价值。
from kuangbin
包含了
+ - * / ^ % = > >> << ==
运算符的重载,可用int char* BigNum
调用构造函数
#define MAXN 9999
#define MAXSIZE 100000
#define DLEN 4
class BigNum
public:
int a[MAXSIZE];
int len;
public:
BigNum()len = 1;memset(a,0,sizeof(a));
BigNum(const int);
BigNum(const char*);
BigNum(const BigNum &);
BigNum &operator=(const BigNum &);
friend istream& operator>>(istream&, BigNum&);
friend ostream& operator<<(ostream&, BigNum&);
BigNum operator+(const BigNum &) const;
BigNum operator-(const BigNum &) const;
BigNum operator*(const BigNum &) const;
BigNum operator/(const int &) const;
BigNum operator^(const int &) const;
int operator%(const int &) const;
bool operator>(const BigNum & T)const;
bool operator==(const BigNum & T)const;
bool operator==(const int & t)const;
bool operator>(const int & t)const;
;
istream& operator>>(istream & in, BigNum & b)
char ch[MAXSIZE*4];
int i = -1;
in>>ch;
int l=strlen(ch);
int count=0,sum=0;
for (i=l-1;i>=0;)
sum = 0;
int t=1;
for (int j=0;j<4&&i>=0;j++,i--,t*=10)
sum+=(ch[i]-'0')*t;
b.a[count]=sum;
count++;
b.len =count++;
return in;
ostream& operator<<(ostream& out, BigNum& b)
int i;
cout << b.a[b.len - 1];
for (i = b.len - 2 ; i >= 0 ; i--)
cout.width(DLEN);
cout.fill('0');
cout << b.a[i];
return out;
BigNum::BigNum(const int b)
int c,d = b;
len = 0;
memset(a,0,sizeof(a));
while (d > MAXN)
c = d - (d / (MAXN + 1)) * (MAXN + 1);
d = d / (MAXN + 1); a[len++] = c;
a[len++] = d;
BigNum::BigNum(const char*s)
int t,k,index,l;
memset(a,0,sizeof(a));
l=strlen(s);
len=l/DLEN;
if (l%DLEN)len++;
index=0;
for (int i=l-1;i>=0;i-=DLEN)
t=0;k=i-DLEN+1;
if (k<0)k=0;
for (int j=k;j<=i;j++)
t=t*10+s[j]-'0';
a[index++]=t;
BigNum::BigNum(const BigNum & T) : len(T.len)
int i;
memset(a,0,sizeof(a));
for (i = 0 ; i < len ; i++) a[i] = T.a[i];
BigNum & BigNum::operator=(const BigNum & n)
len = n.len;
memset(a,0,sizeof(a));
for (int i = 0 ; i < len ; i++)
a[i] = n.a[i];
return *this;
BigNum BigNum::operator+(const BigNum & T) const
BigNum t(*this);
int i,big;
big = T.len > len ? T.len : len;
for (i = 0 ; i < big ; i++)
t.a[i] +=T.a[i];
if (t.a[i] > MAXN)
t.a[i + 1]++;
t.a[i] -=MAXN+1;
if (t.a[big] != 0) t.len = big + 1;
else t.len = big;
return t;
BigNum BigNum::operator-(const BigNum & T) const
int i,j,big;
bool flag;
BigNum t1,t2;
if (*this>T)
t1=*this,t2=T,flag=0;
else
t1=T,t2=*this,flag=1;
big=t1.len;
for (i = 0 ; i < big ; i++)
if (t1.a[i] < t2.a[i])
j = i + 1;
while (t1.a[j] == 0) j++;
t1.a[j--]--;
while (j > i) t1.a[j--] += MAXN;
t1.a[i] += MAXN + 1 - t2.a[i];
else t1.a[i] -= t2.a[i];
t1.len = big;
while (t1.a[len - 1] == 0 && t1.len > 1)
t1.len--,big--;
if (flag)t1.a[big-1]=0-t1.a[big-1];
return t1;
BigNum BigNum::operator*(const BigNum & T) const
BigNum ret;
int i,j,up,temp,temp1;
for (i = 0 ; i < len ; i++)
up = 0;
for (j = 0 ; j < T.len ; j++)
temp = a[i] * T.a[j] + ret.a[i + j] + up;
if (temp > MAXN)
temp1 = temp - temp / (MAXN + 1) * (MAXN + 1);
up = temp / (MAXN + 1);
ret.a[i + j] = temp1;
else
up = 0;
ret.a[i + j] = temp;
if (up != 0)
ret.a[i + j] = up;
ret.len = i + j;
while (ret.a[ret.len - 1] == 0 && ret.len > 1) ret.len--;
return ret;
BigNum BigNum::operator/(const int & b) const
BigNum ret;
int i,down = 0;
for (i = len - 1 ; i >= 0 ; i--)
ret.a[i] = (a[i] + down * (MAXN + 1)) / b;
down = a[i] + down * (MAXN + 1) - ret.a[i] * b;
ret.len = len;
while (ret.a[ret.len - 1] == 0 && ret.len > 1) ret.len--;
return ret;
int BigNum::operator %(const int & b) const
int i,d=0;
for (i = len-1; i>=0; i--)
d = ((d * (MAXN+1))% b + a[i])% b;
return d;
BigNum BigNum::operator^(const int & n) const
BigNum t,ret(1);
int i;
if (n<0)exit(-1);
if (n==0)return 1;
if (n==1)return *this;
int m=n;
while (m>1)
t=*this;
for ( i=1;i<<1<=m;i<<=1)
t=t*t;
m-=i;
ret=ret*t;
if (m==1)ret=ret*(*this);
return ret;
bool BigNum::operator>(const BigNum & T) const
int ln;
if (len > T.len) return true;
else if (len == T.len)
ln = len - 1;
while (a[ln] == T.a[ln] && ln >= 0) ln--;
return ln>=0 && a[ln]>T.a[ln];
else return false;
bool BigNum::operator==(const BigNum & T) const
int ln;
if (len != T.len) return false;
else
ln = len - 1;
while (a[ln] == T.a[ln] && ln-- );
return ln<0;
bool BigNum::operator >(const int & t) const
BigNum b(t);
return *this>b;
bool BigNum::operator==(const int & t) const
BigNum b(t);
return *this==b;
以上是关于完全高精度的主要内容,如果未能解决你的问题,请参考以下文章
POJ 3181 Dollar Dayz ( 完全背包 && 大数高精度 )