《DSP using MATLAB》Problem 8.27
Posted 沧海一粟
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了《DSP using MATLAB》Problem 8.27相关的知识,希望对你有一定的参考价值。
7月底,又一个夏天,又一个火热的夏天,来到火炉城武汉,天天高温橙色预警,到今天已有二十多天。
先看看住的地方
下雨的时候是这样的
接着做题
代码:
%% ------------------------------------------------------------------------ %% Output Info about this m-file fprintf(\'\\n***********************************************************\\n\'); fprintf(\' <DSP using MATLAB> Problem 8.27 \\n\\n\'); banner(); %% ------------------------------------------------------------------------ Fp = 100; % analog passband freq in Hz Fs = 150; % analog stopband freq in Hz fs = 1000; % sampling rate in Hz % ------------------------------- % ω = ΩT = 2πF/fs % Digital Filter Specifications: % ------------------------------- wp = 2*pi*Fp/fs; % digital passband freq in rad/sec %wp = Fp; ws = 2*pi*Fs/fs; % digital stopband freq in rad/sec %ws = Fs; Rp = 1.0; % passband ripple in dB As = 30; % stopband attenuation in dB Ripple = 10 ^ (-Rp/20) % passband ripple in absolute Attn = 10 ^ (-As/20) % stopband attenuation in absolute % Analog prototype specifications: Inverse Mapping for frequencies T = 1/fs; % set T = 1 OmegaP = wp/T; % prototype passband freq OmegaS = ws/T; % prototype stopband freq % Analog Butterworth Prototype Filter Calculation: [cs, ds] = afd_butt(OmegaP, OmegaS, Rp, As); % Calculation of second-order sections: fprintf(\'\\n***** Cascade-form in s-plane: START *****\\n\'); [CS, BS, AS] = sdir2cas(cs, ds) fprintf(\'\\n***** Cascade-form in s-plane: END *****\\n\'); % Calculation of Frequency Response: [db_s, mag_s, pha_s, ww_s] = freqs_m(cs, ds, 2*pi/T); % Calculation of Impulse Response: [ha, x, t] = impulse(cs, ds); % Match-z Transformation: %[b, a] = imp_invr(cs, ds, T) % digital Num and Deno coefficients of H(z) [b, a] = mzt(cs, ds, T) % digital Num and Deno coefficients of H(z) [C, B, A] = dir2par(b, a) % Calculation of Frequency Response: [db, mag, pha, grd, ww] = freqz_m(b, a); %% ----------------------------------------------------------------- %% Plot %% ----------------------------------------------------------------- figure(\'NumberTitle\', \'off\', \'Name\', \'Problem 8.27 Analog Butterworth lowpass\') set(gcf,\'Color\',\'white\'); M = 1.2; % Omega max subplot(2,2,1); plot(ww_s/pi*T, mag_s); grid on; axis([-1.5, 1.5, 0, 1.1]); xlabel(\' Analog frequency in k\\pi units\'); ylabel(\'|H|\'); title(\'Magnitude in Absolute\'); set(gca, \'XTickMode\', \'manual\', \'XTick\', [-500, -300, 0, 200, 300, 1000]*T); set(gca, \'YTickMode\', \'manual\', \'YTick\', [0, 0.0316, 0.5, 0.8913, 1]); subplot(2,2,2); plot(ww_s/pi*T, db_s); grid on; %axis([0, M, -50, 10]); xlabel(\'Analog frequency in k\\pi units\'); ylabel(\'Decibels\'); title(\'Magnitude in dB \'); %set(gca, \'XTickMode\', \'manual\', \'XTick\', [-0.3, -0.2, 0, 0.2, 0.3, 1.0]); set(gca, \'YTickMode\', \'manual\', \'YTick\', [-65, -30, -1, 0]); set(gca,\'YTickLabelMode\',\'manual\',\'YTickLabel\',[\'65\';\'30\';\' 1\';\' 0\']); subplot(2,2,3); plot(ww_s/pi*T, pha_s/pi); grid on; axis([-1.010, 1.010, -1.2, 1.2]); xlabel(\'Analog frequency in k\\pi nuits\'); ylabel(\'radians\'); title(\'Phase Response\'); set(gca, \'XTickMode\', \'manual\', \'XTick\', [-0.3, -0.2, 0, 0.2, 0.3, 1.0]); set(gca, \'YTickMode\', \'manual\', \'YTick\', [-1:0.5:1]); subplot(2,2,4); plot(t, ha); grid on; %axis([0, 30, -0.05, 0.25]); xlabel(\'time in seconds\'); ylabel(\'ha(t)\'); title(\'Impulse Response\'); figure(\'NumberTitle\', \'off\', \'Name\', \'Problem 8.27 Digital Butterworth lowpass\') set(gcf,\'Color\',\'white\'); M = 2; % Omega max %% Note %% %% Magnitude of H(z) * T %% Note %% subplot(2,2,1); plot(ww/pi, mag/fs); axis([0, M, 0, 1.1]); grid on; xlabel(\' frequency in \\pi units\'); ylabel(\'|H|\'); title(\'Magnitude Response\'); set(gca, \'XTickMode\', \'manual\', \'XTick\', [0, 0.2, 0.3, 1.0, M]); set(gca, \'YTickMode\', \'manual\', \'YTick\', [0, 0.0316, 0.5, 0.8913, 1]); subplot(2,2,2); plot(ww/pi, pha/pi); axis([0, M, -1.1, 1.1]); grid on; xlabel(\'frequency in \\pi nuits\'); ylabel(\'radians in \\pi units\'); title(\'Phase Response\'); set(gca, \'XTickMode\', \'manual\', \'XTick\', [0, 0.2, 0.3, 1.0, M]); set(gca, \'YTickMode\', \'manual\', \'YTick\', [-1:1:1]); subplot(2,2,3); plot(ww/pi, db); axis([0, M, -120, 10]); grid on; xlabel(\'frequency in \\pi units\'); ylabel(\'Decibels\'); title(\'Magnitude in dB \'); set(gca, \'XTickMode\', \'manual\', \'XTick\', [0, 0.2, 0.3, 1.0, M]); set(gca, \'YTickMode\', \'manual\', \'YTick\', [-70, -30, -1, 0]); set(gca,\'YTickLabelMode\',\'manual\',\'YTickLabel\',[\'70\';\'30\';\' 1\';\' 0\']); subplot(2,2,4); plot(ww/pi, grd); grid on; %axis([0, M, 0, 35]); xlabel(\'frequency in \\pi units\'); ylabel(\'Samples\'); title(\'Group Delay\'); set(gca, \'XTickMode\', \'manual\', \'XTick\', [0, 0.2, 0.3, 1.0, M]); %set(gca, \'YTickMode\', \'manual\', \'YTick\', [0:5:35]); figure(\'NumberTitle\', \'off\', \'Name\', \'Problem 8.27 Pole-Zero Plot\') set(gcf,\'Color\',\'white\'); zplane(b,a); title(sprintf(\'Pole-Zero Plot\')); %pzplotz(b,a); % Calculation of Impulse Response: %[hs, xs, ts] = impulse(c, d); figure(\'NumberTitle\', \'off\', \'Name\', \'Problem 8.27 Imp & Freq Response\') set(gcf,\'Color\',\'white\'); t = [0:0.001:0.07]; subplot(2,1,1); impulse(cs,ds,t); grid on; % Impulse response of the analog filter axis([0, 0.07, -100, 250]);hold on n = [0:1:0.07/T]; hn = filter(b,a,impseq(0,0,0.07/T)); % Impulse response of the digital filter stem(n*T,hn); xlabel(\'time in sec\'); title (sprintf(\'Impulse Responses, T=%.3f\',T)); hold off %n = [0:1:29]; %hz = impz(b, a, n); % Calculation of Frequency Response: [dbs, mags, phas, wws] = freqs_m(cs, ds, 2*pi/T); % Analog frequency s-domain [dbz, magz, phaz, grdz, wwz] = freqz_m(b, a); % Digital z-domain %% ----------------------------------------------------------------- %% Plot %% ----------------------------------------------------------------- M = 1/T; % Omega max subplot(2,1,2); plot(wws/(2*pi),mags*fs,\'b\', wwz/(2*pi)*fs,magz,\'r\'); grid on; xlabel(\'frequency in Hz\'); title(\'Magnitude Responses\'); ylabel(\'Magnitude\'); text(1.4,.5,\'Analog filter\'); text(1.5,1.5,\'Digital filter\');
运行结果:
绝对指标
非归一化Butterworth模拟低通直接形式的系数
模拟低通串联形式的系数
开始Match-z方法,转变成数字低通
数字低通直接形式的系数
数字低通的并联形式的系数
模拟Butterworth低通的幅度谱、相位谱和脉冲响应
经过Match-z方法得到的数字Butterworth低通的幅度谱、相位谱和群延迟
数字Butterworth低通的零极点图
模拟Butterworth低通、Match-z方法得到的数字Butterworth低通,二者的脉冲响应、幅度响应如下
从上图可以看出,Match-z方法得到的数字低通,其脉冲响应与原模拟脉冲响应似乎有延迟的效果;其不像脉冲响应不变法那样,数字低通的
脉冲响应是相应模拟低通脉冲响应的采样序列,即保持了脉冲响应形式不变。
以上是关于《DSP using MATLAB》Problem 8.27的主要内容,如果未能解决你的问题,请参考以下文章
《DSP using MATLAB》Problem 3.12