BM板子
Posted liulex
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了BM板子相关的知识,希望对你有一定的参考价值。
BM线性递推
玄学玩意
struct LinearRecurrence using int64 = long long; using vec = std::vector<int64>; static void extand(vec& a, size_t d, int64 value = 0) if (d <= a.size()) return; a.resize(d, value); static vec BerlekampMassey(const vec& s, int64 mod) std::function<int64(int64)> inverse = [&](int64 a) return a == 1 ? 1 : (int64)(mod - mod / a) * inverse(mod % a) % mod; ; vec A = 1, B = 1; int64 b = s[0]; for (size_t i = 1, m = 1; i < s.size(); ++i, m++) int64 d = 0; for (size_t j = 0; j < A.size(); ++j) d += A[j] * s[i - j] % mod; if (!(d %= mod)) continue; if (2 * (A.size() - 1) <= i) auto temp = A; extand(A, B.size() + m); int64 coef = d * inverse(b) % mod; for (size_t j = 0; j < B.size(); ++j) A[j + m] -= coef * B[j] % mod; if (A[j + m] < 0) A[j + m] += mod; B = temp, b = d, m = 0; else extand(A, B.size() + m); int64 coef = d * inverse(b) % mod; for (size_t j = 0; j < B.size(); ++j) A[j + m] -= coef * B[j] % mod; if (A[j + m] < 0) A[j + m] += mod; return A; static void exgcd(int64 a, int64 b, int64& g, int64& x, int64& y) if (!b) x = 1, y = 0, g = a; else exgcd(b, a % b, g, y, x); y -= x * (a / b); static int64 crt(const vec& c, const vec& m) int n = c.size(); int64 M = 1, ans = 0; for (int i = 0; i < n; ++i) M *= m[i]; for (int i = 0; i < n; ++i) int64 x, y, g, tm = M / m[i]; exgcd(tm, m[i], g, x, y); ans = (ans + tm * x * c[i] % M) % M; return (ans + M) % M; static vec ReedsSloane(const vec& s, int64 mod) auto inverse = [](int64 a, int64 m) int64 d, x, y; exgcd(a, m, d, x, y); return d == 1 ? (x % m + m) % m : -1; ; auto L = [](const vec& a, const vec& b) int da = (a.size() > 1 || (a.size() == 1 && a[0])) ? a.size() - 1 : -1000; int db = (b.size() > 1 || (b.size() == 1 && b[0])) ? b.size() - 1 : -1000; return std::max(da, db + 1); ; auto prime_power = [&](const vec& s, int64 mod, int64 p, int64 e) // linear feedback shift register mod p^e, p is prime std::vector<vec> a(e), b(e), an(e), bn(e), ao(e), bo(e); vec t(e), u(e), r(e), to(e, 1), uo(e), pw(e + 1); ; pw[0] = 1; for (int i = pw[0] = 1; i <= e; ++i) pw[i] = pw[i - 1] * p; for (int64 i = 0; i < e; ++i) a[i] = pw[i], an[i] = pw[i]; b[i] = 0, bn[i] = s[0] * pw[i] % mod; t[i] = s[0] * pw[i] % mod; if (t[i] == 0) t[i] = 1, u[i] = e; else for (u[i] = 0; t[i] % p == 0; t[i] /= p, ++u[i]) ; for (size_t k = 1; k < s.size(); ++k) for (int g = 0; g < e; ++g) if (L(an[g], bn[g]) > L(a[g], b[g])) ao[g] = a[e - 1 - u[g]]; bo[g] = b[e - 1 - u[g]]; to[g] = t[e - 1 - u[g]]; uo[g] = u[e - 1 - u[g]]; r[g] = k - 1; a = an, b = bn; for (int o = 0; o < e; ++o) int64 d = 0; for (size_t i = 0; i < a[o].size() && i <= k; ++i) d = (d + a[o][i] * s[k - i]) % mod; if (d == 0) t[o] = 1, u[o] = e; else for (u[o] = 0, t[o] = d; t[o] % p == 0; t[o] /= p, ++u[o]) ; int g = e - 1 - u[o]; if (L(a[g], b[g]) == 0) extand(bn[o], k + 1); bn[o][k] = (bn[o][k] + d) % mod; else int64 coef = t[o] * inverse(to[g], mod) % mod * pw[u[o] - uo[g]] % mod; int m = k - r[g]; extand(an[o], ao[g].size() + m); extand(bn[o], bo[g].size() + m); for (size_t i = 0; i < ao[g].size(); ++i) an[o][i + m] -= coef * ao[g][i] % mod; if (an[o][i + m] < 0) an[o][i + m] += mod; while (an[o].size() && an[o].back() == 0) an[o].pop_back(); for (size_t i = 0; i < bo[g].size(); ++i) bn[o][i + m] -= coef * bo[g][i] % mod; if (bn[o][i + m] < 0) bn[o][i + m] -= mod; while (bn[o].size() && bn[o].back() == 0) bn[o].pop_back(); return std::make_pair(an[0], bn[0]); ; std::vector<std::tuple<int64, int64, int>> fac; for (int64 i = 2; i * i <= mod; ++i) if (mod % i == 0) int64 cnt = 0, pw = 1; while (mod % i == 0) mod /= i, ++cnt, pw *= i; fac.emplace_back(pw, i, cnt); if (mod > 1) fac.emplace_back(mod, mod, 1); std::vector<vec> as; size_t n = 0; for (auto&& x : fac) int64 mod, p, e; vec a, b; std::tie(mod, p, e) = x; auto ss = s; for (auto&& x : ss) x %= mod; std::tie(a, b) = prime_power(ss, mod, p, e); as.emplace_back(a); n = std::max(n, a.size()); vec a(n), c(as.size()), m(as.size()); for (size_t i = 0; i < n; ++i) for (size_t j = 0; j < as.size(); ++j) m[j] = std::get<0>(fac[j]); c[j] = i < as[j].size() ? as[j][i] : 0; a[i] = crt(c, m); return a; LinearRecurrence(const vec& s, const vec& c, int64 mod) : init(s), trans(c), mod(mod), m(s.size()) LinearRecurrence(const vec& s, int64 mod, bool is_prime = true) : mod(mod) vec A; if (is_prime) A = BerlekampMassey(s, mod); else A = ReedsSloane(s, mod); if (A.empty()) A = 0; m = A.size() - 1; trans.resize(m); for (int i = 0; i < m; ++i) trans[i] = (mod - A[i + 1]) % mod; std::reverse(trans.begin(), trans.end()); init = s.begin(), s.begin() + m; int64 calc(int64 n) if (mod == 1) return 0; if (n < m) return init[n]; vec v(m), u(m << 1); int msk = !!n; for (int64 m = n; m > 1; m >>= 1) msk <<= 1; v[0] = 1 % mod; for (int x = 0; msk; msk >>= 1, x <<= 1) std::fill_n(u.begin(), m * 2, 0); x |= !!(n & msk); if (x < m) u[x] = 1 % mod; else // can be optimized by fft/ntt for (int i = 0; i < m; ++i) for (int j = 0, t = i + (x & 1); j < m; ++j, ++t) u[t] = (u[t] + v[i] * v[j]) % mod; for (int i = m * 2 - 1; i >= m; --i) for (int j = 0, t = i - m; j < m; ++j, ++t) u[t] = (u[t] + trans[j] * u[i]) % mod; v = u.begin(), u.begin() + m; int64 ret = 0; for (int i = 0; i < m; ++i) ret = (ret + v[i] * init[i]) % mod; return ret; vec init, trans; int64 mod; int m; ;
接口: LinearRecurrence solver(f, mod, false);//f前若干项vector,mod模数,最后一个是否为质数
solver.calc(n);//计算第n项
#include<bits/stdc++.h> struct LinearRecurrence using int64 = long long; using vec = std::vector<int64>; static void extand(vec& a, size_t d, int64 value = 0) if (d <= a.size()) return; a.resize(d, value); static vec BerlekampMassey(const vec& s, int64 mod) std::function<int64(int64)> inverse = [&](int64 a) return a == 1 ? 1 : (int64)(mod - mod / a) * inverse(mod % a) % mod; ; vec A = 1, B = 1; int64 b = s[0]; for (size_t i = 1, m = 1; i < s.size(); ++i, m++) int64 d = 0; for (size_t j = 0; j < A.size(); ++j) d += A[j] * s[i - j] % mod; if (!(d %= mod)) continue; if (2 * (A.size() - 1) <= i) auto temp = A; extand(A, B.size() + m); int64 coef = d * inverse(b) % mod; for (size_t j = 0; j < B.size(); ++j) A[j + m] -= coef * B[j] % mod; if (A[j + m] < 0) A[j + m] += mod; B = temp, b = d, m = 0; else extand(A, B.size() + m); int64 coef = d * inverse(b) % mod; for (size_t j = 0; j < B.size(); ++j) A[j + m] -= coef * B[j] % mod; if (A[j + m] < 0) A[j + m] += mod; return A; static void exgcd(int64 a, int64 b, int64& g, int64& x, int64& y) if (!b) x = 1, y = 0, g = a; else exgcd(b, a % b, g, y, x); y -= x * (a / b); static int64 crt(const vec& c, const vec& m) int n = c.size(); int64 M = 1, ans = 0; for (int i = 0; i < n; ++i) M *= m[i]; for (int i = 0; i < n; ++i) int64 x, y, g, tm = M / m[i]; exgcd(tm, m[i], g, x, y); ans = (ans + tm * x * c[i] % M) % M; return (ans + M) % M; static vec ReedsSloane(const vec& s, int64 mod) auto inverse = [](int64 a, int64 m) int64 d, x, y; exgcd(a, m, d, x, y); return d == 1 ? (x % m + m) % m : -1; ; auto L = [](const vec& a, const vec& b) int da = (a.size() > 1 || (a.size() == 1 && a[0])) ? a.size() - 1 : -1000; int db = (b.size() > 1 || (b.size() == 1 && b[0])) ? b.size() - 1 : -1000; return std::max(da, db + 1); ; auto prime_power = [&](const vec& s, int64 mod, int64 p, int64 e) // linear feedback shift register mod p^e, p is prime std::vector<vec> a(e), b(e), an(e), bn(e), ao(e), bo(e); vec t(e), u(e), r(e), to(e, 1), uo(e), pw(e + 1); ; pw[0] = 1; for (int i = pw[0] = 1; i <= e; ++i) pw[i] = pw[i - 1] * p; for (int64 i = 0; i < e; ++i) a[i] = pw[i], an[i] = pw[i]; b[i] = 0, bn[i] = s[0] * pw[i] % mod; t[i] = s[0] * pw[i] % mod; if (t[i] == 0) t[i] = 1, u[i] = e; else for (u[i] = 0; t[i] % p == 0; t[i] /= p, ++u[i]) ; for (size_t k = 1; k < s.size(); ++k) for (int g = 0; g < e; ++g) if (L(an[g], bn[g]) > L(a[g], b[g])) ao[g] = a[e - 1 - u[g]]; bo[g] = b[e - 1 - u[g]]; to[g] = t[e - 1 - u[g]]; uo[g] = u[e - 1 - u[g]]; r[g] = k - 1; a = an, b = bn; for (int o = 0; o < e; ++o) int64 d = 0; for (size_t i = 0; i < a[o].size() && i <= k; ++i) d = (d + a[o][i] * s[k - i]) % mod; if (d == 0) t[o] = 1, u[o] = e; else for (u[o] = 0, t[o] = d; t[o] % p == 0; t[o] /= p, ++u[o]) ; int g = e - 1 - u[o]; if (L(a[g], b[g]) == 0) extand(bn[o], k + 1); bn[o][k] = (bn[o][k] + d) % mod; else int64 coef = t[o] * inverse(to[g], mod) % mod * pw[u[o] - uo[g]] % mod; int m = k - r[g]; extand(an[o], ao[g].size() + m); extand(bn[o], bo[g].size() + m); for (size_t i = 0; i < ao[g].size(); ++i) an[o][i + m] -= coef * ao[g][i] % mod; if (an[o][i + m] < 0) an[o][i + m] += mod; while (an[o].size() && an[o].back() == 0) an[o].pop_back(); for (size_t i = 0; i < bo[g].size(); ++i) bn[o][i + m] -= coef * bo[g][i] % mod; if (bn[o][i + m] < 0) bn[o][i + m] -= mod; while (bn[o].size() && bn[o].back() == 0) bn[o].pop_back(); return std::make_pair(an[0], bn[0]); ; std::vector<std::tuple<int64, int64, int>> fac; for (int64 i = 2; i * i <= mod; ++i) if (mod % i == 0) int64 cnt = 0, pw = 1; while (mod % i == 0) mod /= i, ++cnt, pw *= i; fac.emplace_back(pw, i, cnt); if (mod > 1) fac.emplace_back(mod, mod, 1); std::vector<vec> as; size_t n = 0; for (auto&& x : fac) int64 mod, p, e; vec a, b; std::tie(mod, p, e) = x; auto ss = s; for (auto&& x : ss) x %= mod; std::tie(a, b) = prime_power(ss, mod, p, e); as.emplace_back(a); n = std::max(n, a.size()); vec a(n), c(as.size()), m(as.size()); for (size_t i = 0; i < n; ++i) for (size_t j = 0; j < as.size(); ++j) m[j] = std::get<0>(fac[j]); c[j] = i < as[j].size() ? as[j][i] : 0; a[i] = crt(c, m); return a; LinearRecurrence(const vec& s, const vec& c, int64 mod) : init(s), trans(c), mod(mod), m(s.size()) LinearRecurrence(const vec& s, int64 mod, bool is_prime = true) : mod(mod) vec A; if (is_prime) A = BerlekampMassey(s, mod); else A = ReedsSloane(s, mod); if (A.empty()) A = 0; m = A.size() - 1; trans.resize(m); for (int i = 0; i < m; ++i) trans[i] = (mod - A[i + 1]) % mod; std::reverse(trans.begin(), trans.end()); init = s.begin(), s.begin() + m; int64 calc(int64 n) if (mod == 1) return 0; if (n < m) return init[n]; vec v(m), u(m << 1); int msk = !!n; for (int64 m = n; m > 1; m >>= 1) msk <<= 1; v[0] = 1 % mod; for (int x = 0; msk; msk >>= 1, x <<= 1) std::fill_n(u.begin(), m * 2, 0); x |= !!(n & msk); if (x < m) u[x] = 1 % mod; else // can be optimized by fft/ntt for (int i = 0; i < m; ++i) for (int j = 0, t = i + (x & 1); j < m; ++j, ++t) u[t] = (u[t] + v[i] * v[j]) % mod; for (int i = m * 2 - 1; i >= m; --i) for (int j = 0, t = i - m; j < m; ++j, ++t) u[t] = (u[t] + trans[j] * u[i]) % mod; v = u.begin(), u.begin() + m; int64 ret = 0; for (int i = 0; i < m; ++i) ret = (ret + v[i] * init[i]) % mod; return ret; vec init, trans; int64 mod; int m; ; using namespace std; typedef long long ll; ll A[50001]; ll mod=1e9; void init() A[2]=A[1]=1; A[0]=0; for(int i=3;i<=50;i++) A[i]=(A[i-1]+A[i-2])%mod; ll qp(ll x,ll n) ll ans=1; while(n) if(n&1)ans=(ans*x)%mod; x=(x*x)%mod; n>>=1; return ans; int main() init(); ll n,m; scanf("%lld%lld",&n,&m); vector<ll> v; ll t=0; for(int i=0;i<=min(n,50ll);i++) t=(t+qp(A[i],m))%mod; v.push_back(t); LinearRecurrence L(v, mod, false); cout<<L.calc(n)<<‘\n‘;
以上是关于BM板子的主要内容,如果未能解决你的问题,请参考以下文章