Mathematically Hard LightOJ-1007(欧拉定理+前缀和)
Posted dwj-2019
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Mathematically Hard LightOJ-1007(欧拉定理+前缀和)相关的知识,希望对你有一定的参考价值。
Description
Mathematically some problems look hard. But with the help of the computer, some problems can be easily solvable.
In this problem, you will be given two integers a and b. You have to find the summation of the scores of the numbers from a to b (inclusive).
The score of a number is defined as the following function.score (x) = n2, where n is the number of relatively prime numbers with x, which are smaller than x
For example,
For 6, the relatively prime numbers with 6 are 1 and 5. So, score (6) = 22 = 4.
For 8, the relatively prime numbers with 8 are 1, 3, 5 and 7. So, score (8) = 42 = 16.
Now you have to solve this task.
Input
Input starts with an integer T (≤ 105), denoting the number of test cases.Each case will contain two integers a and b (2 ≤ a ≤ b ≤ 5 * 106).
Output
For each case, print the case number and the summation of all the scores from a to b.
Sample Input
3
6 6
8 8
2 20
Sample Output
Case 1: 4
Case 2: 16
Case 3: 1237
Note
Euler‘s totient function applied to a positive integer ø(n) is defined to be the number of positive integers less than or equal to ø(n) that
are relatively prime to ø(n). is read "phi of n."Given the general prime factorization of , one can compute ø(n)using the formula
在数论中,对正整数n,欧拉函数 是小于或等于n的正整数中与n互质的数的数目,对欧拉函数打表;
注意 :long long 需要用无符号型;
代码如下:
#include<iostream> #include<cstdio> using namespace std; typedef unsigned long long ll; const int maxx=5001000; ll a[maxx]; void init() for(int i=0; i<maxx; i++) a[i]=i; for(int i=2; i<maxx; i++) if(a[i]==i) for(int j=i; j<maxx; j+=i) a[j]=a[j]/i*(i-1); for(int i=2; i<maxx; i++) a[i]=a[i]*a[i]+a[i-1]; int main() init(); int t,Case=0; cin>>t; while(t--) int n,m; cin>>n>>m; printf("Case %d: ",++Case); cout<<a[m]-a[n-1]<<endl; return 0;
以上是关于Mathematically Hard LightOJ-1007(欧拉定理+前缀和)的主要内容,如果未能解决你的问题,请参考以下文章
light oj 1007 - Mathematically Hard
ligtoj 1007 - Mathematically Hard(欧拉函数+前缀和)
Mathematically Hard LightOJ-1007(欧拉定理+前缀和)
LightOJ 1007 Mathematically Hard