POJ-3255-Roadblocks(次短路的另一种求法)
Posted staceyacm
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ-3255-Roadblocks(次短路的另一种求法)相关的知识,希望对你有一定的参考价值。
Bessie has moved to a small farm and sometimes enjoys returning to visit one of her best friends. She does not want to get to her old home too quickly, because she likes the scenery along the way. She has decided to take the second-shortest rather than the shortest path. She knows there must be some second-shortest path.
The countryside consists of R (1 ≤ R ≤ 100,000) bidirectional roads, each linking two of the N (1 ≤ N ≤ 5000) intersections, conveniently numbered 1..N. Bessie starts at intersection 1, and her friend (the destination) is at intersection N.
The second-shortest path may share roads with any of the shortest paths, and it may backtrack i.e., use the same road or intersection more than once. The second-shortest path is the shortest path whose length is longer than the shortest path(s) (i.e., if two or more shortest paths exist, the second-shortest path is the one whose length is longer than those but no longer than any other path).
Input
Lines 2.. R+1: Each line contains three space-separated integers: A, B, and D that describe a road that connects intersections A and B and has length D (1 ≤ D ≤ 5000)
Output
Sample Input
4 4 1 2 100 2 4 200 2 3 250 3 4 100
Sample Output
450
Hint
#include<cstdio> #include<cstring> #include<algorithm> #include<iostream> #include<queue> #include<stack> #include<set> #include<map> #include<vector> #include<cmath> const int maxn=1e5+5; typedef long long ll; using namespace std; struct node int pos,w; node(int x,int y) pos=x; w=y; bool friend operator<(node x,node y ) return x.w>y.w; ; struct edge int u,v; ll cost; int nxt; Edge[maxn<<1]; int cnt; ll dis[5005],dis2[5005]; int head[5005],vis[5005]; void Add(int u,int v,ll w) Edge[cnt].u=u; Edge[cnt].v=v; Edge[cnt].cost=w; Edge[cnt].nxt=head[u]; head[u]=cnt++; void Dijkstra(int u) dis[u]=0; priority_queue<node>q; q.push(node(u,0)); while(!q.empty()) node now=q.top(); q.pop(); if(vis[now.pos]) continue; vis[now.pos]=1; for(int t=head[now.pos];t!=-1;t=Edge[t].nxt) if(dis[now.pos]+Edge[t].cost<dis[Edge[t].v]) dis[Edge[t].v]=dis[now.pos]+Edge[t].cost; q.push(node(Edge[t].v,dis[Edge[t].v])); return ; int main() int n,m; scanf("%d%d",&n,&m); memset(vis,0,sizeof(vis)); memset(head,-1,sizeof(head)); memset(dis,0x3f3f3f3f,sizeof(dis)); cnt=0; int u,v; ll w; for(int t=0;t<m;t++) scanf("%d%d%lld",&u,&v,&w); Add(u,v,w); Add(v,u,w); Dijkstra(1); for(int t=1;t<=n;t++) dis2[t]=dis[t]; memset(dis,0x3f3f3f3f,sizeof(dis)); memset(vis,0,sizeof(vis)); Dijkstra(n); int ans=0x3f3f3f3f; for(int t=0;t<cnt;t++) if(dis[Edge[t].u]+dis2[Edge[t].v]+Edge[t].cost<ans&&(dis[Edge[t].u]+dis2[Edge[t].v]+Edge[t].cost)!=dis2[n]) ans=dis[Edge[t].u]+dis2[Edge[t].v]+Edge[t].cost; printf("%d\n",ans); system("pause"); return 0;
以上是关于POJ-3255-Roadblocks(次短路的另一种求法)的主要内容,如果未能解决你的问题,请参考以下文章
POJ3255 Roadblocks [Dijkstra,次短路]
POJ-3255 Roadblocks---Dijkstra队列优化+次短路