CRT中国剩余定理简介
Posted darkvalkyrie
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了CRT中国剩余定理简介相关的知识,希望对你有一定的参考价值。
中国剩余定理(CRT)
中国剩余定理出自中国的某本古书,似乎是孙子兵法?(雾
其中有这样一个问题:
有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何?
即,对于这样一个方程组:
\[
\begincasesx\equiv a_1\pmodm_1\\x\equiv a_2\pmodm_2\\x\equiv a_3\pmodm_3\\\dots\\x\equiv a_i\pmodm_i\endcases
\]
我们已知所有\(a_i,m_i\),求可行解\(x\),可以证明的是,若所有\(m_i\)互质,那么该方程组有唯一解。
可以构造出一个解:如果有\(k\)个方程,设\(M=\prod_i=1^k m_i,n_i=\fracMm_i\),则有\(x=\sum_i=1^k a_in_in_i^-1\pmodM\)。
扩展中国剩余定理(EXCRT)
扩展中国剩余定理不要求\(m_i\)互质,其结论是由数学归纳法得出的,跟CRT实际上没太大关系。这种情况下,方程组的解是不唯一的。
首先考虑两个方程的情况。
假设我们有\(x\equiv a_1\pmodm_1,x\equiv a_2\pmodm_2\),那么显然\(x+m_1*t_1=a_1,x+m_2*t_2=a_2\),其中\(t_i\)为未知数。得出\(a_1-a_2=m_1*t_1-m_2*t_2\),根据\(Bezout\)定理,若\(gcd(m_1,m_2)\mid (a_1-a_2)\),该方程有解。那么我们就可以求出两个方程的情况下的一个解了。
然后考虑多个方程。
假设前\(k-1\)个方程的解为\(x\),记\(m=lcm(m_1,m_2,m_3\cdots,m_k-1)\),那么显然前\(k-1\)个方程的通解是\(x+i*m,i\in \mathbbZ\)。为什么要最小公倍数呢?显然最小公倍数中包含了前\(k-1\)个数中出现的所有因子,因此\(x\)加上任意倍的\(m\)对任意的\(m_i\)取模答案不变,所以其实把前\(k-1\)个\(m_i\)全部乘起来当作\(m\)也不是不可以。而对于第\(k\)个方程,我们既要使得解对前\(k-1\)个方程成立,因此我们取某前\(k-1\)个方程的某个通解,又要使解对第\(k\)个方程成立,因此我们要使\(x+i*m\equiv a_k\pmodm_k\)。
现在看到这个方程,\(x+i*m\equiv a_k\pmodm_k\),可以化为\(i*m\equiv a_k-x\pmodm_k\)我们要求解它,就是求解一个线性同余方程,可以用扩展欧几里得算法得出解。显然,假设前\(k\)个方程的解为\(x'\),那么\(x'=x+i*m\)。
于是我们对方程组进行\(k\)次扩展欧几里得,就可以得出前\(k\)个方程的解。
洛谷上板子取模比较神奇,贴一下代码:
#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<ctime>
#include<cstdlib>
#include<algorithm>
#include<queue>
#include<set>
#include<map>
#define ll long long
using namespace std;
inline ll read()
ll f=1,x=0;char c=getchar();
while(c<'0'||c>'9')if(c=='-')f=-1;c=getchar();
while(c>='0'&&c<='9')x=x*10+c-'0';c=getchar();
return x*f;
inline ll mul(ll a,ll b,ll p)
ll ans=0;
for(;b;b>>=1)
if(b&1) ans=(ans+a)%p;
a=(a+a)%p;
return ans;
inline ll exgcd(ll a,ll b,ll &x,ll &y)
if(b==0)x=1,y=0;return a;
ll d=exgcd(b,a%b,x,y);
ll z=x;x=y;y=z-y*(a/b);
return d;
int n;
int main()
n=read();
ll M,gcd,ans=0,x0,y0;
M=read(),ans=read();//第一个方程的最小非负整数解就是它自己
for(register int i=2;i<=n;++i)
ll a,m;
m=read(),a=read();
gcd=exgcd(M,m,x0,y0);
ll k=m/gcd;
x0=mul(x0,((a-ans%m+m)%m)/gcd,m);//至今不知道为什么可以取模
ans+=M*x0;
M*=k;
ans=(ans%M+M)%M;
printf("%lld",(ans%M+M)%M);
return 0;
以上是关于CRT中国剩余定理简介的主要内容,如果未能解决你的问题,请参考以下文章