R语言时间序列分析复杂的季节模式

Posted tecdat

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了R语言时间序列分析复杂的季节模式相关的知识,希望对你有一定的参考价值。

原文链接

 

分析复杂的季节模式

 

当时间序列数据的频率高于季度或月度时,许多预测程序在分析季节性影响方面遇到了障碍。

澳大利亚蒙纳士大学的研究人员在美国统计协会杂志(JASA)上发表了一篇有趣的论文,以及一个R程序,以处理这种情况 - 可称为“复杂的季节性”。

我已经更新并修改了他们的一项计算 - 使用每周而不是每日的美国常规汽油价格数据 - 并发现整个事情非常有趣。

技术图片技术图片?

如果您查看图表下方图例中的颜色代码,则更容易阅读和理解。

我从FRED那里抓住了传统的每周美国汽油价格。这些价格是“常规” - 泵的普通选择。在查看之前的数据后,我确定了2000年第一周的开始日期。然后,我在Hyndman R Forecast软件包中使用了tbats(。),可以下载熟悉本站点的读者,以便在开源矩阵编程语言R中使用。

然后,我建立了2012年第一周称为newGP的时间序列的结束日期,预测将tbats(。)应用于2000年的历史数据:1到2012:1其中第二个数字指的是从1到52的周数。请注意,需要进行一些数据清理工作,以便将天然气价格数据一致地划分为52周。我将“第53周”的平均值与最接近的一周(第二年的52或1)进行平均,然后摆脱了53周。

104周的预测显示在上图中的红色实线上。

这实际上看起来很有希望,好像它可能为美国运输机构编码一些有用的信息。

JASA论文的草稿可以PDF格式下载。它被称为具有复杂季节性模式的预测时间序列,使用指数平滑以及每日美国天然气价格,分析土耳其的日常电力需求和银行呼叫中心数据。

我只是分析天然气价格数据的一部分,因为我还没有接受每日数据。但是每周数据中由tbats(。)识别的季节性模式很有趣,如下所示。

技术图片技术图片?

每周频率可以让我们以一定的精度“进入”模式的年中摆动。从模型的样本外性能来看,这种“摆动”在某些情况下可能会更加突出并且非常重要。

适合于较高频率数据的Trignometric系列提取tbats(。)中的季节性模式其还具有其他高级特征,例如估计残差的ARMA(自回归移动平均)模型的能力。

我没有完全优化估算,但这些结果足够强大,可以鼓励探索切换和开关程序。

在此聚合级别工作的另一个例程是stlf(。)例程。这是使用STL分解在第36章基于时间序列分解的模式发现中详细描述的数据挖掘论文集。

 

有问题欢迎下方留言!

大数据部落 -中国专业的第三方数据服务提供商,提供定制化的一站式数据挖掘和统计分析咨询服务

统计分析和数据挖掘咨询服务:y0.cn/teradat(咨询服务请联系官网客服

技术图片?技术图片QQ:3025393450

技术图片?

【服务场景】  

科研项目; 公司项目外包;线上线下一对一培训;数据采集;学术研究;报告撰写;市场调查。

【大数据部落】提供定制化的一站式数据挖掘和统计分析咨询

技术图片

欢迎选修我们的R语言数据分析挖掘必知必会课程!

技术图片

以上是关于R语言时间序列分析复杂的季节模式的主要内容,如果未能解决你的问题,请参考以下文章

R语言时间序列应用(decomposeHolt-Winters初步)

R语言--时间序列分析步骤

时间序列分析之季节模型的R脚本

R语言ggplot2可视化:可视化时间序列季节图使用季节图可以比较不同年份相同月份的数据差异或者相同(年/月/周等)的时间序列在同一天的数据差异(Seasonal Plot)

R语言—数据分析1

时间序列分析 - 基础知识与分析场景(Time series analysis)