Tarjan——强连通分量

Posted gmsd

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Tarjan——强连通分量相关的知识,希望对你有一定的参考价值。

是的你没有看错,又是Tarjan(说过他发明了很多算法),那么什么是Tarjan

首先看看度娘的解释:

 

有向图强连通分量:在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,
则称两个顶点强连通(strongly connected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。有向图的极大强连通子图,
称为强连通分量(strongly connected components)。

 

是不是没有看懂,我也是

首先了解几个概念:强连通,强连通图,强连通分量

强连通:在一个有向图G中,两个点a,b,a可以走到b,b可以走到a,我们就说(a,b)强连通

强连通图:在一个有向图G中,任意两个点都是强连通

强连通分量:在一个有向图G中,有一个子图,它任意两个点都是强连通,我们就说这个子图为强连通分量,特别的,一个点也是一个强连通分量

如图所示:

技术图片

 

显然可得:1,2,3,5 构成了一个强连通分量(一个点也是)

 

下面进入正题,厉害的Tarjan发明的厉害的Tarjan

首先引进一个概念(以前应该都学过),时间戳,用数组dfn表示(应该不用讲吧),也就是搜索这个图的顺序(最后还是讲了)

每个节点的时间戳不同

再是一个low数组,low[x]表示以x为根的子树中,每个节点中连接的点的时间戳的最小值(可能有点难懂,但这个非常重要,是核心思想,等一下的模拟过程会详细讲述)

low的初值:low[x]=dfn[x]

那么如何储存强连通分量呢,可以用栈(学c++的有福利啦,我们有STL)

技术图片

 

可惜我不会用,(手写栈挺好的),每次遍历到一个新节点,就把它放进栈,如果这个点有出度,就继续往下找,直到不能再找

每一次回来都要更新low值,当然是取小的那个,如果发现low[x]=dfn[x]那么它的子节点中肯定有一个连上来,既然可以过去又可以回来,很明显是一个强连通分量

那么这个x就是这个强连通分量的根节点,那么栈中间,比这个x晚进来的点就是x的子节点,那么这些点全部出栈,就组成了一个强连通分量

到这来就完了,但是好像还是理解透彻(反正我是这样)

那么就模拟一下

还是这张图5——>4

技术图片

low[1]=dfn[1]=1,1入栈

low[2]=dfn[2]=2,2入栈

low[3]=dfn[3]=3,3入栈

low[5]=dfn[5]=4,4入栈

然后发现5连接着1,已经寻找过得了,那么就看看,谁才是真正的祖先

low[1]=1,low[5]=4,好吧,5输了,所以1是5的根节点,low[5]=min(low[5],low[1])=1

继续发现还有4,low[4]=dfn[4]=5,4入栈

但是4已经没有了出度,往回退

发现low[4]=dfn[4]那么4就是一个强连通分量的根节点(其实也就它一个),4退栈

继续往回退:low[5]=min(low[5],low[4])=1;

继续:一直到1,low[3]=min(low[3],low[5])=1;low[2]=min(low[2],low[3])=1;

low[1]=min(low[1],low[2])=1;

发现此时low[1]=dfn[1],所以1也是一个强连通分量的根,此时发现栈里还有1,2,3,5

所以这个强连通分量为1,2,3,5

1还有一个出度:4

寻找4,low[4]=dfn[4]=6,发现没有出度

low[4]=dfn[4],所以4是一个强连通分量的根节点(还是只有他一个),退栈

往回退,low[1]=min(low[1],dfn[4])=1;

 

这样就完了吗?

万一还有图没有遍历到呢

所以要加一个语句:

for(int i=1;i<=number;i++)
       if(!dfn[i])Tarjan(i);

以上的模拟过程用程序表示就是:

 

void Tarjan(int x)
    dfn[x]=low[x]=++deep;
    q[++hd]=x;res[x]=1;
    for(int i=head[x];i;i=next[i])
        int y=ver[i];
        if(!dfn[y])
            Tarjan(y);
            low[x]=min(low[x],low[y]);
        
        else if(res[y])low[x]=min(low[x],dfn[y]);
    
    if(low[x]==dfn[x])
        int sum=0;
        do
            res[q[hd]]=0;hd--;sum++;
        while(x!=q[hd+1]);
        if(sum>1)ans++;
    
    

 

来一个模板题:洛谷

P2863 [USACO06JAN]牛的舞会The Cow Prom

大意是求强连通分量数量,不过注意的是,每一个点不能算,所以要加一个特判

以下是AC代码:

 

#include<bits/stdc++.h>
using namespace std;

const int N=50002;
int number,m,ans=0;
int tot,next[N],ver[N],head[N];
int dfn[N],low[N],deep,res[N],q[N],hd;

int read()
    int s=0,w=1;char ch=getchar();
    while(ch<0||ch>9)w=(ch==-)?-1:1,ch=getchar();
    while(ch>=0&&ch<=9)s=s*10+ch-0,ch=getchar();
    return s*w;


void add(int x,int y)
    ver[++tot]=y;next[tot]=head[x];head[x]=tot;


void Tarjan(int x)
    dfn[x]=low[x]=++deep;
    q[++hd]=x;res[x]=1;
    for(int i=head[x];i;i=next[i])
        int y=ver[i];
        if(!dfn[y])
            Tarjan(y);
            low[x]=min(low[x],low[y]);
        
        else if(res[y])low[x]=min(low[x],dfn[y]);
    
    if(low[x]==dfn[x])
        int sum=0;
        do
            res[q[hd]]=0;hd--;sum++;
        while(x!=q[hd+1]);
        if(sum>1)ans++;
    
    


int main()
    number=read();m=read();
    for(int i=1;i<=m;i++)
        int x=read(),y=read();
        add(x,y);
    
    for(int i=1;i<=number;i++)
       if(!dfn[i])Tarjan(i);
    cout<<ans;
    return 0;

 

以上是关于Tarjan——强连通分量的主要内容,如果未能解决你的问题,请参考以下文章

强连通分量(tarjan求强连通分量)

有向图强连通分量的Tarjan算法

强连通分量tarjan模板复习

tarjan 强连通分量

[强连通分量+Tarjan缩点]

tarjan算法(强连通分量 + 强连通分量缩点 + 桥 + 割点 + LCA)