Android多种方式实现相机圆形预览

Posted bodaren

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Android多种方式实现相机圆形预览相关的知识,希望对你有一定的参考价值。

效果图如下:

技术图片技术图片

一、为预览控件设置圆角

为控件设置ViewOutlineProvider

public RoundTextureView(Context context, AttributeSet attrs) 
        super(context, attrs);
        setOutlineProvider(new ViewOutlineProvider() 
            @Override
            public void getOutline(View view, Outline outline) 
                Rect rect = new Rect(0, 0, view.getMeasuredWidth(), view.getMeasuredHeight());
                outline.setRoundRect(rect, radius);
            
        );
        setClipToOutline(true);
    

在需要时修改圆角值并更新

    public void setRadius(int radius) 
        this.radius = radius;
    

    public void turnRound() 
        invalidateOutline();
    

即可根据设置的圆角值更新控件显示的圆角大小。当控件为正方形,且圆角值为边长的一半,显示的就是圆形。

二、实现正方形预览

1. 设备支持1:1预览尺寸

首先介绍一种简单但是局限性较大的实现方式:将相机预览尺寸和预览控件的大小都调整为1:1

一般android设备都支持多种预览尺寸,以Samsung Tab S3为例

  • 在使用Camera API时,其支持的预览尺寸如下:
2019-08-02 13:16:08.669 16407-16407/com.wsy.glcamerademo I/CameraHelper: supportedPreviewSize: 1920x1080
2019-08-02 13:16:08.669 16407-16407/com.wsy.glcamerademo I/CameraHelper: supportedPreviewSize: 1280x720
2019-08-02 13:16:08.669 16407-16407/com.wsy.glcamerademo I/CameraHelper: supportedPreviewSize: 1440x1080
2019-08-02 13:16:08.669 16407-16407/com.wsy.glcamerademo I/CameraHelper: supportedPreviewSize: 1088x1088
2019-08-02 13:16:08.670 16407-16407/com.wsy.glcamerademo I/CameraHelper: supportedPreviewSize: 1056x864
2019-08-02 13:16:08.670 16407-16407/com.wsy.glcamerademo I/CameraHelper: supportedPreviewSize: 960x720
2019-08-02 13:16:08.670 16407-16407/com.wsy.glcamerademo I/CameraHelper: supportedPreviewSize: 720x480
2019-08-02 13:16:08.670 16407-16407/com.wsy.glcamerademo I/CameraHelper: supportedPreviewSize: 640x480
2019-08-02 13:16:08.670 16407-16407/com.wsy.glcamerademo I/CameraHelper: supportedPreviewSize: 352x288
2019-08-02 13:16:08.670 16407-16407/com.wsy.glcamerademo I/CameraHelper: supportedPreviewSize: 320x240
2019-08-02 13:16:08.670 16407-16407/com.wsy.glcamerademo I/CameraHelper: supportedPreviewSize: 176x144

其中1:1的预览尺寸为:1088x1088。

  • 在使用Camera2 API时,其支持的预览尺寸(其实也包含了PictureSize)如下:
2019-08-02 13:19:24.980 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 4128x3096
2019-08-02 13:19:24.980 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 4128x2322
2019-08-02 13:19:24.980 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 3264x2448
2019-08-02 13:19:24.980 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 3264x1836
2019-08-02 13:19:24.980 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 3024x3024
2019-08-02 13:19:24.980 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 2976x2976
2019-08-02 13:19:24.980 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 2880x2160
2019-08-02 13:19:24.981 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 2592x1944
2019-08-02 13:19:24.981 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 2560x1920
2019-08-02 13:19:24.981 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 2560x1440
2019-08-02 13:19:24.981 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 2560x1080
2019-08-02 13:19:24.981 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 2160x2160
2019-08-02 13:19:24.981 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 2048x1536
2019-08-02 13:19:24.981 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 2048x1152
2019-08-02 13:19:24.981 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 1936x1936
2019-08-02 13:19:24.981 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 1920x1080
2019-08-02 13:19:24.981 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 1440x1080
2019-08-02 13:19:24.981 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 1280x960
2019-08-02 13:19:24.981 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 1280x720
2019-08-02 13:19:24.981 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 960x720
2019-08-02 13:19:24.981 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 720x480
2019-08-02 13:19:24.981 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 640x480
2019-08-02 13:19:24.982 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 320x240
2019-08-02 13:19:24.982 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 176x144

  

 

其中1:1的预览尺寸为:3024x3024、2976x2976、2160x2160、1936x1936。

只要我们选择1:1的预览尺寸,再将预览控件设置为正方形,即可实现正方形预览
再通过设置预览控件的圆角为边长的一半,即可实现圆形预览

2. 设备不支持1:1预览尺寸的情况
  • 选择1:1预览尺寸的缺陷分析

    • 分辨率局限性
      上述说到,我们可以选择1:1的预览尺寸进行预览,但是局限性较高
      可选择范围都很小。如果相机不支持1:1的预览尺寸,这个方案就不可行了。
    • 资源消耗
      以Samsung tab S3为例,该设备使用Camera2 API时,支持的正方形预览尺寸都很大,在进行图像处理等操作时将占用较多系统资源。
  • 处理不支持1:1预览尺寸的情况

    • 添加一个1:1尺寸的ViewGroup
    • 将TextureView放入ViewGroup
    • 设置TextureView的margin值以达到显示中心正方形区域的效果
 技术图片
示意图

示例代码

   //将预览控件和预览尺寸比例保持一致,避免拉伸
    
        FrameLayout.LayoutParams textureViewLayoutParams = (FrameLayout.LayoutParams) textureView.getLayoutParams();
        int newHeight = 0;
        int newWidth = textureViewLayoutParams.width;
        //横屏
        if (displayOrientation % 180 == 0) 
            newHeight = textureViewLayoutParams.width * previewSize.height / previewSize.width;
        
        //竖屏
        else 
            newHeight = textureViewLayoutParams.width * previewSize.width / previewSize.height;
        
        ////当不是正方形预览的情况下,添加一层ViewGroup限制View的显示区域
        if (newHeight != textureViewLayoutParams.height) 
           insertFrameLayout = new RoundFrameLayout(CoverByParentCameraActivity.this);
           int sideLength = Math.min(newWidth, newHeight);
           FrameLayout.LayoutParams layoutParams = new FrameLayout.LayoutParams(sideLength, sideLength);
           insertFrameLayout.setLayoutParams(layoutParams);
           FrameLayout parentView = (FrameLayout) textureView.getParent();
           parentView.removeView(textureView);
           parentView.addView(insertFrameLayout);

           insertFrameLayout.addView(textureView);
           FrameLayout.LayoutParams newTextureViewLayoutParams = new FrameLayout.LayoutParams(newWidth, newHeight);
           //横屏
           if (displayOrientation % 180 == 0) 
               newTextureViewLayoutParams.leftMargin = ((newHeight - newWidth) / 2);
           
           //竖屏
           else 
               newTextureViewLayoutParams.topMargin = -(newHeight - newWidth) / 2;
           
           textureView.setLayoutParams(newTextureViewLayoutParams);
        
    

  

 

三、使用GLSurfaceView进行自定义程度更高的预览

使用上面的方法操作已经可完成正方形和圆形预览,但是仅适用于原生相机,当我们的数据源并非是原生相机的情况时如何进行圆形预览?接下来介绍使用GLSurfaceView显示NV21的方案,完全是自己实现预览数据的绘制

1. GLSurfaceView使用流程

技术图片

OpenGL渲染YUV数据流程

其中的重点是渲染器(Renderer)的编写,Renderer的介绍如下:

   /**
     * A generic renderer interface.
     * <p>
     * The renderer is responsible for making OpenGL calls to render a frame.
     * <p>
     * GLSurfaceView clients typically create their own classes that implement
     * this interface, and then call @link GLSurfaceView#setRenderer to
     * register the renderer with the GLSurfaceView.
     * <p>
     *
     * <div class="special reference">
     * <h3>Developer Guides</h3>
     * <p>For more information about how to use OpenGL, read the
     * <a href="@docRootguide/topics/graphics/opengl.html">OpenGL</a> developer guide.</p>
     * </div>
     *
     * <h3>Threading</h3>
     * The renderer will be called on a separate thread, so that rendering
     * performance is decoupled from the UI thread. Clients typically need to
     * communicate with the renderer from the UI thread, because that‘s where
     * input events are received. Clients can communicate using any of the
     * standard Java techniques for cross-thread communication, or they can
     * use the @link GLSurfaceView#queueEvent(Runnable) convenience method.
     * <p>
     * <h3>EGL Context Lost</h3>
     * There are situations where the EGL rendering context will be lost. This
     * typically happens when device wakes up after going to sleep. When
     * the EGL context is lost, all OpenGL resources (such as textures) that are
     * associated with that context will be automatically deleted. In order to
     * keep rendering correctly, a renderer must recreate any lost resources
     * that it still needs. The @link #onSurfaceCreated(GL10, EGLConfig) method
     * is a convenient place to do this.
     *
     *
     * @see #setRenderer(Renderer)
     */
    public interface Renderer 
        /**
         * Called when the surface is created or recreated.
         * <p>
         * Called when the rendering thread
         * starts and whenever the EGL context is lost. The EGL context will typically
         * be lost when the Android device awakes after going to sleep.
         * <p>
         * Since this method is called at the beginning of rendering, as well as
         * every time the EGL context is lost, this method is a convenient place to put
         * code to create resources that need to be created when the rendering
         * starts, and that need to be recreated when the EGL context is lost.
         * Textures are an example of a resource that you might want to create
         * here.
         * <p>
         * Note that when the EGL context is lost, all OpenGL resources associated
         * with that context will be automatically deleted. You do not need to call
         * the corresponding "glDelete" methods such as glDeleteTextures to
         * manually delete these lost resources.
         * <p>
         * @param gl the GL interface. Use <code>instanceof</code> to
         * test if the interface supports GL11 or higher interfaces.
         * @param config the EGLConfig of the created surface. Can be used
         * to create matching pbuffers.
         */
        void onSurfaceCreated(GL10 gl, EGLConfig config);

        /**
         * Called when the surface changed size.
         * <p>
         * Called after the surface is created and whenever
         * the OpenGL ES surface size changes.
         * <p>
         * Typically you will set your viewport here. If your camera
         * is fixed then you could also set your projection matrix here:
         * <pre class="prettyprint">
         * void onSurfaceChanged(GL10 gl, int width, int height) 
         *     gl.glViewport(0, 0, width, height);
         *     // for a fixed camera, set the projection too
         *     float ratio = (float) width / height;
         *     gl.glMatrixMode(GL10.GL_PROJECTION);
         *     gl.glLoadIdentity();
         *     gl.glFrustumf(-ratio, ratio, -1, 1, 1, 10);
         * 
         * </pre>
         * @param gl the GL interface. Use <code>instanceof</code> to
         * test if the interface supports GL11 or higher interfaces.
         * @param width
         * @param height
         */
        void onSurfaceChanged(GL10 gl, int width, int height);

        /**
         * Called to draw the current frame.
         * <p>
         * This method is responsible for drawing the current frame.
         * <p>
         * The implementation of this method typically looks like this:
         * <pre class="prettyprint">
         * void onDrawFrame(GL10 gl) 
         *     gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
         *     //... other gl calls to render the scene ...
         * 
         * </pre>
         * @param gl the GL interface. Use <code>instanceof</code> to
         * test if the interface supports GL11 or higher interfaces.
         */
        void onDrawFrame(GL10 gl);
    

  

 
  • void onSurfaceCreated(GL10 gl, EGLConfig config)
    在Surface创建或重建的情况下回调
  • void onSurfaceChanged(GL10 gl, int width, int height)
    在Surface的大小发生变化的情况下回调
  • void onDrawFrame(GL10 gl)
    在这里实现绘制操作。当我们设置的renderModeRENDERMODE_CONTINUOUSLY时,该函数将不断地执行;
    当我们设置的renderModeRENDERMODE_WHEN_DIRTY时,将只在创建完成和调用requestRender后才执行。一般我们选择RENDERMODE_WHEN_DIRTY渲染模式,避免过度绘制。

一般情况下,我们会自己实现一个Renderer,然后为GLSurfaceView设置Renderer,可以说,Renderer的编写是整个流程的核心步骤。以下是在void onSurfaceCreated(GL10 gl, EGLConfig config)进行的初始化操作和在void onDrawFrame(GL10 gl)进行的绘制操作的流程图:

 

技术图片

渲染YUV数据的Renderer

 

2. 具体实现
  • 坐标系介绍
  • 技术图片技术图片
  •                                                 Android View坐标系                                                                                                                         OpenGL世界坐标系
  • 着色器编写
   /**
     * 顶点着色器
     */
    private static String VERTEX_SHADER =
            "    attribute vec4 attr_position;\\n" +
                    "    attribute vec2 attr_tc;\\n" +
                    "    varying vec2 tc;\\n" +
                    "    void main() \\n" +
                    "        gl_Position = attr_position;\\n" +
                    "        tc = attr_tc;\\n" +
                    "    ";

    /**
     * 片段着色器
     */
    private static String FRAG_SHADER =
            "    varying vec2 tc;\\n" +
                    "    uniform sampler2D ySampler;\\n" +
                    "    uniform sampler2D uSampler;\\n" +
                    "    uniform sampler2D vSampler;\\n" +
                    "    const mat3 convertMat = mat3( 1.0, 1.0, 1.0, -0.001, -0.3441, 1.772, 1.402, -0.7141, -0.58060);\\n" +
                    "    void main()\\n" +
                    "    \\n" +
                    "        vec3 yuv;\\n" +
                    "        yuv.x = texture2D(ySampler, tc).r;\\n" +
                    "        yuv.y = texture2D(uSampler, tc).r - 0.5;\\n" +
                    "        yuv.z = texture2D(vSampler, tc).r - 0.5;\\n" +
                    "        gl_FragColor = vec4(convertMat * yuv, 1.0);\\n" +
                    "    ";

 

  • 内建变量解释

    • gl_Position
      VERTEX_SHADER代码里的gl_Position代表绘制的空间坐标。由于我们是二维绘制,所以直接传入OpenGL二维坐标系的左下(-1,-1)、右下(1,-1)、左上(-1,1)、右上(1,1),也就是-1,-1,1,-1,-1,1,1,1
    • gl_FragColor
      FRAG_SHADER代码里的gl_FragColor代表单个片元的颜色
  • 其他变量解释

    • ySampleruSamplervSampler
      分别代表Y、U、V纹理采样器
    • convertMat
      根据以下公式:
      R = Y + 1.402 (V - 128)
      G = Y - 0.34414 (U - 128) - 0.71414 (V - 128)
      B = Y + 1.772 (U - 128)
      我们可得到一个YUV转RGB的矩阵
      1.0,    1.0,    1.0, 
      0,     -0.344,  1.77, 
      1.403, -0.714,  0 
      

       

  • 部分类型、函数的解释

    • vec3、vec4
      分别代表三维向量、四维向量。
    • vec4 texture2D(sampler2D sampler, vec2 coord)
      以指定的矩阵将采样器的图像纹理转换为颜色值;如:
      texture2D(ySampler, tc).r获取到的是Y数据,
      texture2D(uSampler, tc).r获取到的是U数据,
      texture2D(vSampler, tc).r获取到的是V数据。
  • 在Java代码中进行初始化
    根据图像宽高创建Y、U、V对应的ByteBuffer纹理数据;
    根据是否镜像显示、旋转角度选择对应的转换矩阵;

    public void init(boolean isMirror, int rotateDegree, int frameWidth, int frameHeight) 
        if (this.frameWidth == frameWidth
                && this.frameHeight == frameHeight
                && this.rotateDegree == rotateDegree
                && this.isMirror == isMirror) 
            return;
        
        dataInput = false;
        this.frameWidth = frameWidth;
        this.frameHeight = frameHeight;
        this.rotateDegree = rotateDegree;
        this.isMirror = isMirror;
        yArray = new byte[this.frameWidth * this.frameHeight];
        uArray = new byte[this.frameWidth * this.frameHeight / 4];
        vArray = new byte[this.frameWidth * this.frameHeight / 4];
    
        int yFrameSize = this.frameHeight * this.frameWidth;
        int uvFrameSize = yFrameSize >> 2;
        yBuf = ByteBuffer.allocateDirect(yFrameSize);
        yBuf.order(ByteOrder.nativeOrder()).position(0);
    
        uBuf = ByteBuffer.allocateDirect(uvFrameSize);
        uBuf.order(ByteOrder.nativeOrder()).position(0);
    
        vBuf = ByteBuffer.allocateDirect(uvFrameSize);
        vBuf.order(ByteOrder.nativeOrder()).position(0);
        // 顶点坐标
        squareVertices = ByteBuffer
                .allocateDirect(GLUtil.SQUARE_VERTICES.length * FLOAT_SIZE_BYTES)
                .order(ByteOrder.nativeOrder())
                .asFloatBuffer();
        squareVertices.put(GLUtil.SQUARE_VERTICES).position(0);
        //纹理坐标
        if (isMirror) 
            switch (rotateDegree) 
                case 0:
                    coordVertice = GLUtil.MIRROR_COORD_VERTICES;
                    break;
                case 90:
                    coordVertice = GLUtil.ROTATE_90_MIRROR_COORD_VERTICES;
                    break;
                case 180:
                    coordVertice = GLUtil.ROTATE_180_MIRROR_COORD_VERTICES;
                    break;
                case 270:
                    coordVertice = GLUtil.ROTATE_270_MIRROR_COORD_VERTICES;
                    break;
                default:
                    break;
            
         else 
            switch (rotateDegree) 
                case 0:
                    coordVertice = GLUtil.COORD_VERTICES;
                    break;
                case 90:
                    coordVertice = GLUtil.ROTATE_90_COORD_VERTICES;
                    break;
                case 180:
                    coordVertice = GLUtil.ROTATE_180_COORD_VERTICES;
                    break;
                case 270:
                    coordVertice = GLUtil.ROTATE_270_COORD_VERTICES;
                    break;
                default:
                    break;
            
        
        coordVertices = ByteBuffer.allocateDirect(coordVertice.length * FLOAT_SIZE_BYTES).order(ByteOrder.nativeOrder()).asFloatBuffer();
        coordVertices.put(coordVertice).position(0);
    
    

      

     

    在Surface创建完成时进行Renderer初始化

  •    private void initRenderer() 
            rendererReady = false;
            createGLProgram();
    
            //启用纹理
            GLES20.glEnable(GLES20.GL_TEXTURE_2D);
            //创建纹理
            createTexture(frameWidth, frameHeight, GLES20.GL_LUMINANCE, yTexture);
            createTexture(frameWidth / 2, frameHeight / 2, GLES20.GL_LUMINANCE, uTexture);
            createTexture(frameWidth / 2, frameHeight / 2, GLES20.GL_LUMINANCE, vTexture);
    
            rendererReady = true;
          
    其中createGLProgram用于创建OpenGL Program并关联着色器代码中的变量
     private void createGLProgram() 
          int programHandleMain = GLUtil.createShaderProgram();
          if (programHandleMain != -1) 
              // 使用着色器程序
              GLES20.glUseProgram(programHandleMain);
              // 获取顶点着色器变量
              int glPosition = GLES20.glGetAttribLocation(programHandleMain, "attr_position");
              int textureCoord = GLES20.glGetAttribLocation(programHandleMain, "attr_tc");
    
              // 获取片段着色器变量
              int ySampler = GLES20.glGetUniformLocation(programHandleMain, "ySampler");
              int uSampler = GLES20.glGetUniformLocation(programHandleMain, "uSampler");
              int vSampler = GLES20.glGetUniformLocation(programHandleMain, "vSampler");
    
              //给变量赋值
              /**
               * GLES20.GL_TEXTURE0 和 ySampler 绑定
               * GLES20.GL_TEXTURE1 和 uSampler 绑定
               * GLES20.GL_TEXTURE2 和 vSampler 绑定
               *
               * 也就是说 glUniform1i的第二个参数代表图层序号
               */
              GLES20.glUniform1i(ySampler, 0);
              GLES20.glUniform1i(uSampler, 1);
              GLES20.glUniform1i(vSampler, 2);
    
              GLES20.glEnableVertexAttribArray(glPosition);
              GLES20.glEnableVertexAttribArray(textureCoord);
    
              /**
               * 设置Vertex Shader数据
               */
              squareVertices.position(0);
              GLES20.glVertexAttribPointer(glPosition, GLUtil.COUNT_PER_SQUARE_VERTICE, GLES20.GL_FLOAT, false, 8, squareVertices);
              coordVertices.position(0);
              GLES20.glVertexAttribPointer(textureCoord, GLUtil.COUNT_PER_COORD_VERTICES, GLES20.GL_FLOAT, false, 8, coordVertices);
          
      
    

      

     

    其中createTexture用于根据宽高和格式创建纹理

          private void createTexture(int width, int height, int format, int[] textureId) 
              //创建纹理
              GLES20.glGenTextures(1, textureId, 0);
              //绑定纹理
              GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, textureId[0]);
              /**
               * @link GLES20#GL_TEXTURE_WRAP_S代表左右方向的纹理环绕模式
               * @link GLES20#GL_TEXTURE_WRAP_T代表上下方向的纹理环绕模式
               *
               *  @link GLES20#GL_REPEAT:重复
               *  @link GLES20#GL_MIRRORED_REPEAT:镜像重复
               *  @link GLES20#GL_CLAMP_TO_EDGE:忽略边框截取
               *
               * 例如我们使用@link GLES20#GL_REPEAT:
               *
               *             squareVertices           coordVertices
               *             -1.0f, -1.0f,            1.0f, 1.0f,
               *             1.0f, -1.0f,             1.0f, 0.0f,         ->          和textureView预览相同
               *             -1.0f, 1.0f,             0.0f, 1.0f,
               *             1.0f, 1.0f               0.0f, 0.0f
               *
               *             squareVertices           coordVertices
               *             -1.0f, -1.0f,            2.0f, 2.0f,
               *             1.0f, -1.0f,             2.0f, 0.0f,         ->          和textureView预览相比,分割成了4 块相同的预览(左下,右下,左上,右上)
               *             -1.0f, 1.0f,             0.0f, 2.0f,
               *             1.0f, 1.0f               0.0f, 0.0f
               */
              GLES20.glTexParameteri(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_WRAP_S, GLES20.GL_REPEAT);
              GLES20.glTexParameteri(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_WRAP_T, GLES20.GL_REPEAT);
              /**
               * @link GLES20#GL_TEXTURE_MIN_FILTER代表所显示的纹理比加载进来的纹理小时的情况
               * @link GLES20#GL_TEXTURE_MAG_FILTER代表所显示的纹理比加载进来的纹理大时的情况
               *
               *  @link GLES20#GL_NEAREST:使用纹理中坐标最接近的一个像素的颜色作为需要绘制的像素颜色
               *  @link GLES20#GL_LINEAR:使用纹理中坐标最接近的若干个颜色,通过加权平均算法得到需要绘制的像素颜色
               */
              GLES20.glTexParameteri(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_MIN_FILTER, GLES20.GL_NEAREST);
              GLES20.glTexParameteri(GLES20.GL_TEXTURE_2D, GLES20.GL_TEXTURE_MAG_FILTER, GLES20.GL_LINEAR);
              GLES20.glTexImage2D(GLES20.GL_TEXTURE_2D, 0, format, width, height, 0, format, GLES20.GL_UNSIGNED_BYTE, null);
          
    

      

     
    • 在Java代码中调用绘制

    在数据源获取到时裁剪并传入帧数据

     @Override
      public void onPreview(final byte[] nv21, Camera camera) 
          //裁剪指定的图像区域
          ImageUtil.cropNV21(nv21, this.squareNV21, previewSize.width, previewSize.height, cropRect);
          //刷新GLSurfaceView
          roundCameraGLSurfaceView.refreshFrameNV21(this.squareNV21);
      
    

      

     

    NV21数据裁剪代码

      /**
       * 裁剪NV21数据
       *
       * @param originNV21 原始的NV21数据
       * @param cropNV21   裁剪结果NV21数据,需要预先分配内存
       * @param width      原始数据的宽度
       * @param height     原始数据的高度
       * @param left       原始数据被裁剪的区域的左边界
       * @param top        原始数据被裁剪的区域的上边界
       * @param right      原始数据被裁剪的区域的右边界
       * @param bottom     原始数据被裁剪的区域的下边界
       */
      public static void cropNV21(byte[] originNV21, byte[] cropNV21, int width, int height, int left, int top, int right, int bottom) 
          int halfWidth = width / 2;
          int cropImageWidth = right - left;
          int cropImageHeight = bottom - top;
    
          //原数据Y左上
          int originalYLineStart = top * width;
          int targetYIndex = 0;
    
          //原数据UV左上
          int originalUVLineStart = width * height + top * halfWidth;
    
          //目标数据的UV起始值
          int targetUVIndex = cropImageWidth * cropImageHeight;
    
          for (int i = top; i < bottom; i++) 
              System.arraycopy(originNV21, originalYLineStart + left, cropNV21, targetYIndex, cropImageWidth);
              originalYLineStart += width;
              targetYIndex += cropImageWidth;
              if ((i & 1) == 0) 
                  System.arraycopy(originNV21, originalUVLineStart + left, cropNV21, targetUVIndex, cropImageWidth);
                  originalUVLineStart += width;
                  targetUVIndex += cropImageWidth;
              
          
      
    

      

     

    传给GLSurafceView并刷新帧数据

      /**
       * 传入NV21刷新帧
       *
       * @param data NV21数据
       */
      public void refreshFrameNV21(byte[] data) 
          if (rendererReady) 
              yBuf.clear();
              uBuf.clear();
              vBuf.clear();
              putNV21(data, frameWidth, frameHeight);
              dataInput = true;
              requestRender();
          
      
    

      

     

    其中putNV21用于将NV21中的Y、U、V数据分别取出

      /**
       * 将NV21数据的Y、U、V分量取出
       *
       * @param src    nv21帧数据
       * @param width  宽度
       * @param height 高度
       */
      private void putNV21(byte[] src, int width, int height) 
    
          int ySize = width * height;
          int frameSize = ySize * 3 / 2;
    
          //取分量y值
          System.arraycopy(src, 0, yArray, 0, ySize);
    
          int k = 0;
    
          //取分量uv值
          int index = ySize;
          while (index < frameSize) 
              vArray[k] = src[index++];
              uArray[k++] = src[index++];
          
          yBuf.put(yArray).position(0);
          uBuf.put(uArray).position(0);
          vBuf.put(vArray).position(0);
      
    

      

     

    在执行requestRender后,onDrawFrame函数将被回调,在其中进行三个纹理的数据绑定并绘制

          @Override
          public void onDrawFrame(GL10 gl) 
              // 分别对每个纹理做激活、绑定、设置数据操作
              if (dataInput) 
                  //y
                  GLES20.glActiveTexture(GLES20.GL_TEXTURE0);
                  GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, yTexture[0]);
                  GLES20.glTexSubImage2D(GLES20.GL_TEXTURE_2D,
                          0,
                          0,
                          0,
                          frameWidth,
                          frameHeight,
                          GLES20.GL_LUMINANCE,
                          GLES20.GL_UNSIGNED_BYTE,
                          yBuf);
    
                  //u
                  GLES20.glActiveTexture(GLES20.GL_TEXTURE1);
                  GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, uTexture[0]);
                  GLES20.glTexSubImage2D(GLES20.GL_TEXTURE_2D,
                          0,
                          0,
                          0,
                          frameWidth >> 1,
                          frameHeight >> 1,
                          GLES20.GL_LUMINANCE,
                          GLES20.GL_UNSIGNED_BYTE,
                          uBuf);
    
                  //v
                  GLES20.glActiveTexture(GLES20.GL_TEXTURE2);
                  GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, vTexture[0]);
                  GLES20.glTexSubImage2D(GLES20.GL_TEXTURE_2D,
                          0,
                          0,
                          0,
                          frameWidth >> 1,
                          frameHeight >> 1,
                          GLES20.GL_LUMINANCE,
                          GLES20.GL_UNSIGNED_BYTE,
                          vBuf);
                  //在数据绑定完成后进行绘制
                  GLES20.glDrawArrays(GLES20.GL_TRIANGLE_STRIP, 0, 4);
              
          
    

      

     

    即可完成绘制。

四、加一层边框

有时候需求并不仅仅是圆形预览这么简单,我们可能还要为相机预览加一层边框


 
技术图片
边框效果

一样的思路,我们动态地修改边框值,并进行重绘。
边框自定义View中的相关代码如下:

  @Override
    protected void onDraw(Canvas canvas) 
        super.onDraw(canvas);
        if (paint == null) 
            paint = new Paint();
            paint.setStyle(Paint.Style.STROKE);
            paint.setAntiAlias(true);
            SweepGradient sweepGradient = new SweepGradient(((float) getWidth() / 2), ((float) getHeight() / 2),
                    new int[]Color.GREEN, Color.CYAN, Color.BLUE, Color.CYAN, Color.GREEN, null);
            paint.setShader(sweepGradient);
        
        drawBorder(canvas, 6);
    


    private void drawBorder(Canvas canvas, int rectThickness) 
        if (canvas == null) 
            return;
        
        paint.setStrokeWidth(rectThickness);
        Path drawPath = new Path();
        drawPath.addRoundRect(new RectF(0, 0, getWidth(), getHeight()), radius, radius, Path.Direction.CW);
        canvas.drawPath(drawPath, paint);
    

    public void turnRound() 
        invalidate();
    

    public void setRadius(int radius) 
        this.radius = radius;
    

 

五、完整Demo代码:

https://github.com/wangshengyang1996/GLCameraDemo

  • 使用Camera API和Camera2 API并选择最接近正方形的预览尺寸
  • 使用Camera API并为其动态添加一层父控件,达到正方形预览的效果
  • 使用Camera API获取预览数据,使用OpenGL的方式进行显示
最后,给大家推荐一个好用的Android免费离线人脸识别的sdk,可以和本文实现技术的完美结合:

https://ai.arcsoft.com.cn/ucenter/resource/openPlatform/index.html?cnblogs

 



以上是关于Android多种方式实现相机圆形预览的主要内容,如果未能解决你的问题,请参考以下文章

Android openGl开发详解-相机预览

Android相机预览设置适配及显示方式

如何使用自定义相机 API 制作圆形框架布局并捕获圆形图像?

Android 实现相机(Camera)预览

Android TextureView+SurfaceTexture实现相机预览

Android:如何通过回调显示相机预览?