斐波那契查找

Posted zhoubo123

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了斐波那契查找相关的知识,希望对你有一定的参考价值。

斐波那契查找

斐波那契查找也是折半查找的一种改良版;斐波那契查找最主要的就是找mid这个点;

在该种查找算法中,我们要找的mid这个点为数组中的黄金分割点,要求黄金分割点

我们就要用到斐波那契数列了;我们可以看一下这个数列:1,1,2,3,5,8,13,21,34,55..........;

可以看出俩个规律:

1:从第三项开始每一项等于它的前两项的和;

2:数列越往后,前后两项的比值越接近0.618,也就是黄金比例的比值;

利用这两个规律我们就可以来找这个黄金分割点;我们令这个数组为F[],下标为k;

技术图片

斐波那契查找的核心就是在mid前面的长度为F[k-1]-1,在mid的后面的长度为F[k-2]-1;

具体步骤:(记待查找的数组为A)

1:构建斐波那契数组;

2:找到n(A数组的长度)在斐波那契数组中的位置,并将数组补全(可用A(n-1)来补);

3:计算mid=low+F(k-1)-1;

4:如果A[mid]>key(key为要查找的数)high=mid-1;k=k-1;(mid前面的长度)

5:如果A[mid[<key  low=mid+1;k=k-2(mid后面的长度);

6:如果A[mid]=key &&mid<=high 则返回下标值(即mid的值);否则查找失败;

 

#include<iostream>
using namespace std;
int max_size=20;
void fbnq_list(int *A)//构建斐波那契数组; 

    A[0]=A[1]=1;
    for(int i=2;i<20;i++)
    
        A[i]=A[i-1]+A[i-2];
    

int fbnq_search(int A[],int n,int key)

    int F[max_size];
    fbnq_list(F);
    int low=0;
    int high=n-1;
    int mid=0;
    int k=0;
    while(n>F[k]-1)//找出n在斐波那契数列中的位置 
        k++;
    for(int i=n;i<F[k]-1;i++)//将数组补全,大于n的下标对于的数全部为A【high】; 
        A[i]=A[high];
    while(low<=high)
    
        mid=low+F[k-1]-1;//mid的位置为黄金分割点; 
        if(A[mid]>key)
        
            high=mid-1;
            k=k-1;//F[k-1]-1为mid前面的元素个数; 
        
        else if(A[mid]<key)
        
            low=mid+1;
            k=k-2;//F[k-1] -1为mid后面的元素个数; 
        
     else
        
            if(mid <= high)//如果为真则找到相应的位置
                return mid;
            else
                return -1;
        
    
    return -1;
    

int main()

    int A[]=-1,2,3,45,54,78,95,102,158,458,1651,1656400;
    int key;
    cin>>key; 
    int x=fbnq_search(A,12,key);
    if(x!=-1) cout<<x;//输出所对应的下标; 
    else cout<<"没有该元素"; 
    return 0;

 

斐波那契查找是折半查找的升级版,那么也要求序列是有序的序列;

在最坏情况下,斐波那契查找的时间复杂度还是O(log2n),且其期望复杂度也为O(log2n),

但是与折半查找相比,斐波那契查找的优点是它只涉及加法和减法运算,而不用除法,

而除法比加减法要占用更多的时间,因此,斐波那契查找的运行时间理论上比折半查找小,

但是还是得视具体情况而定。

以上是关于斐波那契查找的主要内容,如果未能解决你的问题,请参考以下文章

斐波那契查找算法解析

Scala练习-斐波那契查找

斐波那契 - 使用递归仅查找偶数的总和 [关闭]

斐波那契查找

有序数组的二分查找&斐波那契查找

斐波那契查找法