[转帖]使用Grafana和Telegraf监视VMware ESXi的方法

Posted jinanxiaolaohu

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[转帖]使用Grafana和Telegraf监视VMware ESXi的方法相关的知识,希望对你有一定的参考价值。

使用Grafana和Telegraf监视VMware ESXi的方法

2019-04-03 15:28:30作者:曾秀珠稿源:云网牛站
https://ywnz.com/linuxyffq/4660.html

坐着很牛B  我比较傻逼.. 照葫芦画瓢之

 


本文介绍使用Grafana和Telegraf监视VMware ESXi的方法,设置非常简单,使用Telegraf的官方vSphere插件从vCenter中提取指标,这包括在vSphere虚拟机管理程序上运行的vSphere主机计算(RAM和CPU),网络,数据存储和虚拟机的度量标准。

 

一、安装InfluxDB和Grafana参考文章

所有收集的指标都存储在InfluxDB数据库中,Grafana将连接到InfluxDB,以在其仪表板上查询和显示指标。参考以下文章:

在Ubuntu 18.04/Debian 9系统上安装InfluxDB的方法

在RHEL 8/CentOS 8上安装InfluxDB的方法

在Ubuntu 18.04系统中安装Grafana 6的方法

在CentOS 7系统中安装Grafana 6的方法

一旦安装了InfluxDB和Grafana,继续安装和配置Telegraf。

 

二、安装和配置Telegraf

如果你使用步骤一中的链接来安装InfluxDB,则会添加Telegraf安装所需的存储库,只需使用以下命令安装Telegraf即可。

CentOS系统运行:

sudo yum -y install telegraf

Ubuntu系统运行:

sudo apt-get -y install telegraf

安装后,我们需要配置Telegraf以从vCenter中提取监控指标,编辑Telegraf主配置文件:

sudo vim /etc/telegraf/telegraf.conf

1、添加InfluxDB输出存储后端,以存储指标:

# Configuration for sending metrics to InfluxDB

[[outputs.influxdb]]

urls = ["http://10.10.1.20:8086"]

database = "vmware"

timeout = "0s"

username = "monitoring"

password = "DBPassword"

将10.10.1.20替换为InfluxDB服务器IP地址,如果你没有在InfluxDB上启用身份验证,则可以安全地删除配置中的用户名和密码行。

2、为Telegraf配置vsphere输入插件,完整配置应该类似以下内容:

# Read metrics from VMware vCenter

[[inputs.vsphere]]

## List of vCenter URLs to be monitored. These three lines must be uncommented

## and edited for the plugin to work.

vcenters = [ "https://10.10.1.2/sdk" ]

username = "administrator@vsphere.local"

password = "AdminPassword"

#

## VMs

## Typical VM metrics (if omitted or empty, all metrics are collected)

vm_metric_include = [

"cpu.demand.average",

"cpu.idle.summation",

"cpu.latency.average",

"cpu.readiness.average",

"cpu.ready.summation",

"cpu.run.summation",

"cpu.usagemhz.average",

"cpu.used.summation",

"cpu.wait.summation",

"mem.active.average",

"mem.granted.average",

"mem.latency.average",

"mem.swapin.average",

"mem.swapinRate.average",

"mem.swapout.average",

"mem.swapoutRate.average",

"mem.usage.average",

"mem.vmmemctl.average",

"net.bytesRx.average",

"net.bytesTx.average",

"net.droppedRx.summation",

"net.droppedTx.summation",

"net.usage.average",

"power.power.average",

"virtualDisk.numberReadAveraged.average",

"virtualDisk.numberWriteAveraged.average",

"virtualDisk.read.average",

"virtualDisk.readOIO.latest",

"virtualDisk.throughput.usage.average",

"virtualDisk.totalReadLatency.average",

"virtualDisk.totalWriteLatency.average",

"virtualDisk.write.average",

"virtualDisk.writeOIO.latest",

"sys.uptime.latest",

]

# vm_metric_exclude = [] ## Nothing is excluded by default

# vm_instances = true ## true by default

#

## Hosts

## Typical host metrics (if omitted or empty, all metrics are collected)

host_metric_include = [

"cpu.coreUtilization.average",

"cpu.costop.summation",

"cpu.demand.average",

"cpu.idle.summation",

"cpu.latency.average",

"cpu.readiness.average",

"cpu.ready.summation",

"cpu.swapwait.summation",

"cpu.usage.average",

"cpu.usagemhz.average",

"cpu.used.summation",

"cpu.utilization.average",

"cpu.wait.summation",

"disk.deviceReadLatency.average",

"disk.deviceWriteLatency.average",

"disk.kernelReadLatency.average",

"disk.kernelWriteLatency.average",

"disk.numberReadAveraged.average",

"disk.numberWriteAveraged.average",

"disk.read.average",

"disk.totalReadLatency.average",

"disk.totalWriteLatency.average",

"disk.write.average",

"mem.active.average",

"mem.latency.average",

"mem.state.latest",

"mem.swapin.average",

"mem.swapinRate.average",

"mem.swapout.average",

"mem.swapoutRate.average",

"mem.totalCapacity.average",

"mem.usage.average",

"mem.vmmemctl.average",

"net.bytesRx.average",

"net.bytesTx.average",

"net.droppedRx.summation",

"net.droppedTx.summation",

"net.errorsRx.summation",

"net.errorsTx.summation",

"net.usage.average",

"power.power.average",

"storageAdapter.numberReadAveraged.average",

"storageAdapter.numberWriteAveraged.average",

"storageAdapter.read.average",

"storageAdapter.write.average",

"sys.uptime.latest",

]

# host_metric_exclude = [] ## Nothing excluded by default

# host_instances = true ## true by default

#

## Clusters

cluster_metric_include = [] ## if omitted or empty, all metrics are collected

# cluster_metric_exclude = [] ## Nothing excluded by default

# cluster_instances = false ## false by default

#

## Datastores

datastore_metric_include = [] ## if omitted or empty, all metrics are collected

# datastore_metric_exclude = [] ## Nothing excluded by default

# datastore_instances = false ## false by default for Datastores only

#

## Datacenters

datacenter_metric_include = [] ## if omitted or empty, all metrics are collected

datacenter_metric_exclude = [ "*" ] ## Datacenters are not collected by default.

# datacenter_instances = false ## false by default for Datastores only

#

## Plugin Settings

## separator character to use for measurement and field names (default: "_")

# separator = "_"

#

## number of objects to retreive per query for realtime resources (vms and hosts)

## set to 64 for vCenter 5.5 and 6.0 (default: 256)

# max_query_objects = 256

#

## number of metrics to retreive per query for non-realtime resources (clusters and datastores)

## set to 64 for vCenter 5.5 and 6.0 (default: 256)

# max_query_metrics = 256

#

## number of go routines to use for collection and discovery of objects and metrics

# collect_concurrency = 1

# discover_concurrency = 1

#

## whether or not to force discovery of new objects on initial gather call before collecting metrics

## when true for large environments this may cause errors for time elapsed while collecting metrics

## when false (default) the first collection cycle may result in no or limited metrics while objects are discovered

# force_discover_on_init = false

#

## the interval before (re)discovering objects subject to metrics collection (default: 300s)

# object_discovery_interval = "300s"

#

## timeout applies to any of the api request made to vcenter

# timeout = "60s"

#

## Optional SSL Config

# ssl_ca = "/path/to/cafile"

# ssl_cert = "/path/to/certfile"

# ssl_key = "/path/to/keyfile"

## Use SSL but skip chain & host verification

insecure_skip_verify = true

要改变的变量是:

1]、10.10.1.2应替换为vCenter IP地址。

2]、administrator@vsphere.local应与你的vCenter用户帐户匹配。

3]、带有密码的AdminPassword用于进行身份验证。

如果vCenter Server具有自签名证书,请确保将insecure_skip_verify标志设置为true:

insecure_skip_verify = true

进行更改后启动并启用Telegraf服务:

sudo systemctl restart telegraf

sudo systemctl enable telegraf

 

三、检查InfluxDB指标

我们需要确认我们的指标被推送到InfluxDB并且可以看到它们。

1、打开InfluxDB shell

使用身份验证:

$ influx -username ‘username‘ -password ‘StrongPassword‘

Connected to http://localhost:8086 version 1.6.4

InfluxDB shell version: 1.6.4

1]、 ‘username‘ - InfluxDB身份验证用户名。

2]、‘StrongPassword‘ - InfluxDB密码。

没有认证:

$ influx

Connected to http://localhost:8086 version 1.6.4

InfluxDB shell version: 1.6.4

切换到我们在telegraf上配置的vmware数据库:

> USE vmware

Using database vmware

检查时间序列指标是否inflow:

> SHOW MEASUREMENTS

name: measurements

name

----

cpu

disk

diskio

kernel

mem

processes

swap

system

vsphere_cluster_clusterServices

vsphere_cluster_mem

vsphere_cluster_vmop

vsphere_datacenter_vmop

vsphere_datastore_datastore

vsphere_datastore_disk

vsphere_host_cpu

vsphere_host_disk

vsphere_host_mem

vsphere_host_net

vsphere_host_power

vsphere_host_storageAdapter

vsphere_host_sys

vsphere_vm_cpu

vsphere_vm_mem

vsphere_vm_net

vsphere_vm_power

vsphere_vm_sys

vsphere_vm_virtualDisk

>

 

四、将InfluxDB数据源添加到Grafana

登录Grafana并添加InfluxDB数据源,指定服务器IP、数据库名称和身份验证帐户:

技术图片

给它命名,选择类型,指定服务器IP:

技术图片

提供数据库名称和身份验证帐户:

技术图片

保存并测试设置:

技术图片

 

五、导入Grafana仪表板

我们已将所有依赖项和测试配置好,最后一项操作是创建或导入将显示vSphere指标的Grafana仪表板。

登录你的Grafana并导航到Dashboard导入部分,使用仪表板ID导入,链接如下:

https://grafana.com/dashboards/8159

https://grafana.com/dashboards/8162

https://grafana.com/dashboards/8165

https://grafana.com/dashboards/8168

操作截图如下:

技术图片

技术图片

技术图片

技术图片

技术图片

成功导入后,应该能看到仪表板上显示的数据了,如下图所示:

技术图片

技术图片

看到如上图,表明导入Grafana全部成功了。

 

相关主题

以上是关于[转帖]使用Grafana和Telegraf监视VMware ESXi的方法的主要内容,如果未能解决你的问题,请参考以下文章

Grafana + InfluxDB + telegraf

burrow+telegraf+Grafana实现Kafka Consumer Lag监控

教你搭建一个Telegraf+Influxdb+Grafana 监控系统

Grafana/Telegraf/Ruby/RVM:telegraf 用户无法找到 ruby​​ 路径

我应该如何让 grafana 知道安装在不同主机上的 telegraf 和 influxdb?

使用Nginx+Telegraf+Influxb+Grafana构建高逼格Nginx集群监控系统!