因数分解算法周期查找算法(简化)
Posted zmzzzz
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了因数分解算法周期查找算法(简化)相关的知识,希望对你有一定的参考价值。
质因数分解的复杂是公认,这也是我们将他作为 RSA (一种广泛使用的公钥加密算法)的数学难题的原因。
\\(N=P*Q\\) (P、Q是质数),n = length of N in bit
对于这么一个N,我们因数分解得到结果的时间复杂度是 \\(2^n\\) ,因为这个复杂,所以也有一堆的数学家在努力降低这个的时间复杂度,目前的优化结果的时间复杂度是 \\(2^ \\sqrt[3]n\\) 。
那么量子是否能够有更好的结果呢?
在讲因数分解之前,需要先提周期查找算法。
周期查找 Period Finding
周期查找的基础是 量子傅里叶变换 。
Input :
\\(f:(0,1,2,…,M-1) \\rightarrow S\\) for all x \\(f(x)=f(x+r)\\)
challenge :
find r
condition:
1) f is 1-1 on period 在周期内,f是一个一一对应的函数
2)\\(M>>r\\) \\(M>2r^2\\)
3)M能够被r整除 (这是一个简化条件,稍后会有不简化的怎么办)
这个电路,我的输入是 $ \\frac1\\sqrt M \\sum_x=0^M-1 |x\\rangle |0\\rangle$
经过f(x)后,我的量子叠加态是 $ \\frac1\\sqrt M \\sum_x=0^M-1 |x\\rangle |f(x)\\rangle$
此时,如果测量了下面的 f(x),那么上面的量子态会坍缩,会变成只有f(x)等于测量结果的x,显而易见,这是一个周期函数。
在 量子傅里叶变换 中,我们提到过傅里叶变换的第一个特点,当输入shift了,结果是不会变的。
如果我们输入的量子态的概率幅为 \\(\\alpha_0 , \\alpha_1, \\alpha_2, \\alpha_3,…, \\alpha_N-1\\) ,输出的量子态的概率幅为 \\(\\beta_0 , \\beta_1, \\beta_2, \\beta_3,…, \\beta_N-1\\)
则,当我们将输入的概率幅变为:\\(\\alpha_N-,\\alpha_0 , \\alpha_1, \\alpha_2, …, \\alpha_N-2\\) 输出的概率不变。(这里写得是概率,不是概率幅,概率是概率幅的平方)
也就是说,我测量的随机结果可能是这个周期当中的i个值,我也能shift成在第一个位置。
即,把 [0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 ……] (每个周期五个,第三个为1,其余为0) 变成 [ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 …… ] (每个周期五个,第三个为1,其余为0) 。
他们经过傅里叶变换后的结果是一样的。
其实到这里,我们发现,我们测不测量f(x)其实都没有关系,因为在这前面所有测量结果对应的x,都是同一个周期的周期函数,因为shift的原因,他们傅里叶变换后的结果都是一样的。
那么,这么做的意义是?
量子傅里叶变换还有第二个特点:傅里叶变换可以改变周期函数的周期。
他可以把周期为r的函数,变成周期为 \\(\\fracMr\\) 的函数。
对最后的这个函数测量,得到的结果是 \\(\\fracMr\\) 的倍数,多测量几次就知道了 \\(\\fracMr\\) 的值。知道了这个值,很容易反推出r的值,周期查找完成。
如果没有简化条件呢?
即,M不是r的倍数。
那,假设测量结果为L,则找到一个最接近 \\(\\fracLM\\) 的分数 \\(\\fractr\\) ,唯一的要求是 \\(M>2r^2\\) 最后通过一种叫做continued fraction的方法找到r。
因数分解
一个例子:
问题:找N=21的因数。
解法:
step 1:
\\(2^0=1 (\\mod 21)\\) 除以21后余数为1
\\(2^1=2 (\\mod 21)\\)
\\(2^2=4 (\\mod 21)\\)
\\(2^3=8 (\\mod 21)\\)
\\(2^4=16 (\\mod 21)\\)
\\(2^5=11 (\\mod 21)\\)
\\(2^6=1 (\\mod 21)\\)
step 2:
\\(2^6-2^0=0 (\\mod 21)\\)
\\(2^6-1=0 (\\mod 21)\\)
\\((2^3-1)(2^3+1)=0 (\\mod 21)\\)
到这一步,我们发现了什么?
\\((2^3-1)(2^3+1)\\)是21的倍数,那么他的两个因数 \\((2^3-1)\\) 和 \\((2^3+1)\\) 一定和21有公约数。
gcd(21,7)=7
gcd(21,9)=3
gcd求最大公约数大家还熟悉吗?
比如说,我们相找21和15的最大公约数。
\\(21=15*1+6\\)
\\(15=6*2+3\\)
\\(6=3*2+0\\)
最大公约数就是最后一个不为0的余数,这里就是3。求最大公约数的算法很快,大概是在 \\(log N\\) 的级别。
那么现在的问题其实就是step1 ,找到函数 \\(f(a)=x^a \\mod N\\) 的周期,在上述例子中 \\(2^0\\) 和 \\(2^6\\) 取余相等,这就是一个周期,周期为6.
现在因数分解问题就全部转化为了周期查找问题。
而周期查找问题恰好,有量子加速的方法,前文已经提过了,不再累述,我们知道周期查找有一个前提条件是 \\(M> 2r^2\\) ,在这个例子中,我们不知道r是多少,这个是我们要求的,但是我们知道,r<N,所以直接让 \\(M > 2N^2\\) 就好。
变成电路图就是:
得到周期,然后经过 step 2 就是我们想要的因数分解。
参考资料:
Quantume Mechanics & Quantume Computation Lecture 10
以上是关于因数分解算法周期查找算法(简化)的主要内容,如果未能解决你的问题,请参考以下文章