40JSON数据源综合案例实战

Posted weiyiming007

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了40JSON数据源综合案例实战相关的知识,希望对你有一定的参考价值。

一、JSON数据源综合案例实战

1、概述

Spark SQL可以自动推断JSON文件的元数据,并且加载其数据,创建一个DataFrame。可以使用SQLContext.read.json()方法,针对一个元素类型为String的RDD,或者是一个JSON文件。

但是要注意的是,这里使用的JSON文件与传统意义上的JSON文件是不一样的。每行都必须,也只能包含一个,单独的,自包含的,有效的JSON对象。不能让一个JSON对象分散在多行。否则会报错。

###
综合性复杂案例:查询成绩为80分以上的学生的基本信息与成绩信息


students.json

"name":"Leo", "score":85

"name":"Marry", "score":99

"name":"Jack", "score":74


2、java案例实现

package cn.spark.study.sql;


import java.util.ArrayList;
import java.util.List;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;

import scala.Tuple2;

/**
 * JSON数据源
 * @author Administrator
 *
 */

public class JSONDataSource 

    public static void main(String[] args) 
        SparkConf conf = new SparkConf()
                .setAppName("JSONDataSource");  
        JavaSparkContext sc = new JavaSparkContext(conf);
        SQLContext sqlContext = new SQLContext(sc);
        
        // 针对json文件,创建DataFrame(针对json文件创建DataFrame)
        DataFrame studentScoresDF = sqlContext.read().json(
                "hdfs://spark1:9000/spark-study/students.json");  
        
        // 针对学生成绩信息的DataFrame,注册临时表,查询分数大于80分的学生的姓名
        // (注册临时表,针对临时表执行sql语句)
        studentScoresDF.registerTempTable("student_scores");
        DataFrame goodStudentScoresDF = sqlContext.sql(
                "select name,score from student_scores where score>=80");
        
        // (将DataFrame转换为rdd,执行transformation操作)
        List<String> goodStudentNames = goodStudentScoresDF.javaRDD().map(
                
                new Function<Row, String>() 
                    
                    private static final long serialVersionUID = 1L;
        
                    @Override
                    public String call(Row row) throws Exception 
                        return row.getString(0);
                    
                    
                ).collect();
        
        // 然后针对JavaRDD<String>,创建DataFrame
        // (针对包含json串的JavaRDD,创建DataFrame)
        List<String> studentInfoJSONs = new ArrayList<String>();
        studentInfoJSONs.add("\"name\":\"Leo\", \"age\":18");  
        studentInfoJSONs.add("\"name\":\"Marry\", \"age\":17");  
        studentInfoJSONs.add("\"name\":\"Jack\", \"age\":19");
        JavaRDD<String> studentInfoJSONsRDD = sc.parallelize(studentInfoJSONs);
        DataFrame studentInfosDF = sqlContext.read().json(studentInfoJSONsRDD);
        
        // 针对学生基本信息DataFrame,注册临时表,然后查询分数大于80分的学生的基本信息
        studentInfosDF.registerTempTable("student_infos");  
        
        String sql = "select name,age from student_infos where name in (";
        for(int i = 0; i < goodStudentNames.size(); i++) 
            sql += "‘" + goodStudentNames.get(i) + "‘";
            if(i < goodStudentNames.size() - 1) 
                sql += ",";
            
        
        sql += ")";
        
        DataFrame goodStudentInfosDF = sqlContext.sql(sql);
        
        // 然后将两份数据的DataFrame,转换为JavaPairRDD,执行join transformation
        // (将DataFrame转换为JavaRDD,再map为JavaPairRDD,然后进行join)
        JavaPairRDD<String, Tuple2<Integer, Integer>> goodStudentsRDD = 
                
                goodStudentScoresDF.javaRDD().mapToPair(new PairFunction<Row, String, Integer>() 

                    private static final long serialVersionUID = 1L;
        
                    @Override
                    public Tuple2<String, Integer> call(Row row) throws Exception 
                        return new Tuple2<String, Integer>(row.getString(0), 
                                Integer.valueOf(String.valueOf(row.getLong(1))));  
                    
                    
                ).join(goodStudentInfosDF.javaRDD().mapToPair(new PairFunction<Row, String, Integer>() 
        
                    private static final long serialVersionUID = 1L;
        
                    @Override
                    public Tuple2<String, Integer> call(Row row) throws Exception 
                        return new Tuple2<String, Integer>(row.getString(0),
                                Integer.valueOf(String.valueOf(row.getLong(1))));   
                    
                    
                ));
        
        // 然后将封装在RDD中的好学生的全部信息,转换为一个JavaRDD<Row>的格式
        // (将JavaRDD,转换为DataFrame)
        JavaRDD<Row> goodStudentRowsRDD = goodStudentsRDD.map(
                
                new Function<Tuple2<String,Tuple2<Integer,Integer>>, Row>() 

                    private static final long serialVersionUID = 1L;

                    @Override
                    public Row call(
                            Tuple2<String, Tuple2<Integer, Integer>> tuple)
                            throws Exception 
                        return RowFactory.create(tuple._1, tuple._2._1, tuple._2._2);
                    
                    
                );
        
        // 创建一份元数据,将JavaRDD<Row>转换为DataFrame
        List<StructField> structFields = new ArrayList<StructField>();
        structFields.add(DataTypes.createStructField("name", DataTypes.StringType, true)); 
        structFields.add(DataTypes.createStructField("score", DataTypes.IntegerType, true));  
        structFields.add(DataTypes.createStructField("age", DataTypes.IntegerType, true));  
        StructType structType = DataTypes.createStructType(structFields);
        
        DataFrame goodStudentsDF = sqlContext.createDataFrame(goodStudentRowsRDD, structType);
        
        // 将好学生的全部信息保存到一个json文件中去
        // (将DataFrame中的数据保存到外部的json文件中去)
        goodStudentsDF.write().format("json").save("hdfs://spark1:9000/spark-study/good-students");  
    
    








####
students.json 
"name":"Leo", "score":85
"name":"Marry", "score":99
"name":"Jack", "score":74


3、scala案例实现

package cn.spark.study.sql

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.types.StructField
import org.apache.spark.sql.types.StringType
import org.apache.spark.sql.types.IntegerType
import org.apache.spark.sql.Row
import org.apache.spark.sql.types.LongType


/**
 * @author Administrator
 */
object JSONDataSource 
  
  def main(args: Array[String]): Unit = 
    val conf = new SparkConf()
        .setAppName("JSONDataSource")  
    val sc = new SparkContext(conf)
    val sqlContext = new SQLContext(sc)
    
    // 创建学生成绩DataFrame
    val studentScoresDF = sqlContext.read.json("hdfs://spark1:9000/spark-study/students.json")
    
    // 查询出分数大于80分的学生成绩信息,以及学生姓名
    studentScoresDF.registerTempTable("student_scores")
    val goodStudentScoresDF = sqlContext.sql("select name,score from student_scores where score>=80")
    val goodStudentNames = goodStudentScoresDF.rdd.map  row => row(0) .collect()  
    
    // 创建学生基本信息DataFrame
    val studentInfoJSONs = Array("\"name\":\"Leo\", \"age\":18", 
        "\"name\":\"Marry\", \"age\":17",
        "\"name\":\"Jack\", \"age\":19")
    val studentInfoJSONsRDD = sc.parallelize(studentInfoJSONs, 3);
    val studentInfosDF = sqlContext.read.json(studentInfoJSONsRDD)  
    
    // 查询分数大于80分的学生的基本信息
    studentInfosDF.registerTempTable("student_infos")
    
    var sql = "select name,age from student_infos where name in ("
    for(i <- 0 until goodStudentNames.length) 
      sql += "‘" + goodStudentNames(i) + "‘"
      if(i < goodStudentNames.length - 1) 
        sql += ","
      
    
    sql += ")"  
    
    val goodStudentInfosDF = sqlContext.sql(sql)
    
    // 将分数大于80分的学生的成绩信息与基本信息进行join
    val goodStudentsRDD = 
        goodStudentScoresDF.rdd.map  row => (row.getAs[String]("name"), row.getAs[Long]("score")) 
            .join(goodStudentInfosDF.rdd.map  row => (row.getAs[String]("name"), row.getAs[Long]("age")) )  
  
    // 将rdd转换为dataframe
    val goodStudentRowsRDD = goodStudentsRDD.map(
        info => Row(info._1, info._2._1.toInt, info._2._2.toInt))  
            
    val structType = StructType(Array(
        StructField("name", StringType, true),
        StructField("score", IntegerType, true),
        StructField("age", IntegerType, true)))  
        
    val goodStudentsDF = sqlContext.createDataFrame(goodStudentRowsRDD, structType)  
    
    // 将dataframe中的数据保存到json中
    goodStudentsDF.write.format("json").save("hdfs://spark1:9000/spark-study/good-students-scala")  
  
  

以上是关于40JSON数据源综合案例实战的主要内容,如果未能解决你的问题,请参考以下文章

Web APIs BOM- 操作浏览器之综合案例

C# 解析“JSON“格式数据和网络实战案例 入门

C# 解析“JSON“格式数据和网络实战案例 入门

Structured Streaming 实战案例 读取文本数据

react综合案例-todolistlocalstorage缓存数据

32Flask实战第32天:优化json数据的返回