2019-07-31机器学习无监督学习之聚类 K-Means算法实例 (图像分割)

Posted ymzm204

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了2019-07-31机器学习无监督学习之聚类 K-Means算法实例 (图像分割)相关的知识,希望对你有一定的参考价值。

样本:

技术图片技术图片

代码:

import numpy as np
import PIL.Image as image
from sklearn.cluster import KMeans

def loadData(filePath):
    f = open(filePath, rb) #二进制形式打开文件
    data = []
    img = image.open(f)
    m, n = img.size #获取图片的大小
    for i in range(m): #将每个像素点RGB颜色处理到0-1
        for j in range(n):
            x, y, z = img.getpixel((i, j)) #黑色为0,0,0 有颜色就好像是其他数字
            #print(x, y, z)
            data.append([x/256.0, y/256.0, z/256.0]) #二维列表[0.0, 0.0, 0.0]
    f.close()
    #print(data)
    return np.mat(data), m, n #以矩阵形式返回data,以及图片大小

imgData, row, col = loadData(D:/python_source/Machine_study/mooc课程数据/课程数据/基于聚类的整图分割/bull.jpg)
#print(imgData, row, col)
label = KMeans(n_clusters=4).fit_predict(imgData)
#聚类获得每个像素所属的类别
label = label.reshape([row, col]) #二维列表
#print(label)
pic_new = image.new("L", (row, col)) #创建一张新的灰度图保存聚类后的效果
for i in range(row): #i,j为图片像素,例如 640*480.   根据所属类别向图片中添加灰度值
    for j in range(col):
        pic_new.putpixel((i, j), int(256/(label[i][j]+1)))
pic_new.save("result-bull-4.jpg", "JPEG")

 

效果图:

技术图片技术图片

以上是关于2019-07-31机器学习无监督学习之聚类 K-Means算法实例 (图像分割)的主要内容,如果未能解决你的问题,请参考以下文章

[机器学习][K-Means] 无监督学习之K均值聚类

2019-07-25机器学习无监督学习之聚类 K-Means算法实例 (1999年中国居民消费城市分类)

《Python机器学习及实践》----无监督学习之数据聚类

《Python机器学习及实践》----无监督学习之数据聚类

无监督学习之聚类1——Kmeans

无监督学习之聚类2——DBSCAN