基于线段树的RMQ

Posted wizarderror

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了基于线段树的RMQ相关的知识,希望对你有一定的参考价值。

RMQ(Range Minimum/Maximum Query)区间最值查询,即给出长度为n的数组A,以及m组询问s、t(s<=t<=n),返回区间[s,t]中的最值。

基于线段树的方法实现的话,建树O(n),查询O(logn),相比ST,适合用于n更大,m较小的情况。

void built(int k, int l, int r)

    if (l==r) t[k] = a[l]; //到叶子上,则赋值
    else 
        built(k*2+1, l, (l+r)/2); //左儿子 
        built(k*2+2, (l+r)/2, r); //右儿子 
        t[k] = min(t[k*2+1], t[k*2+2]); //回溯赋值 
    

void update(int k, int a)

    //叶子节点 
    k += n-1;
    t[k] = a;
    //向上更新 
    while (k>0) 
        k = (k-1)/2;
        t[k] = min(t[k*2+1], t[k*2+2]);
    

int query(int a, int b, int k, int l, int r) //查询区间[a,b], 当前查询结点的位置为k, 所表示的区间为[l,r],默认k为根结点

    if (r<=a||b<=l) return INF; //当前区间与所查询区间无交集,返回一个不影响答案的值
    if (a<=l&&r<=b) return t[k]; //当前区间包含于所查询区间,直接返回当前区间的最值就好了
    else 
        int vl = query(a, b, k*2+1, l, (l+r)/2); //查询左儿子
        int vr = query(a, b, k*2+1, (l+r)/2, r); //查询右儿子
        return min(vl, vr);
    

https://blog.csdn.net/zearot/article/details/48299459

https://blog.csdn.net/lian233/article/details/58250641

 

以上是关于基于线段树的RMQ的主要内容,如果未能解决你的问题,请参考以下文章

RMQ类问题利器:线段树

RMQ类问题利器:线段树

线段树入门

#RMQ,动态开点线段树#CF803G Periodic RMQ Problem

51Nod.1766.树上最远点对(树的直径 RMQ 线段树/ST表)

RMQ1