Sorting It All Out (拓扑排序+思维)
Posted staceyacm
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Sorting It All Out (拓扑排序+思维)相关的知识,希望对你有一定的参考价值。
An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.
Input
Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character "<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.
Output
For each problem instance, output consists of one line. This line should be one of the following three:
Sorted sequence determined after xxx relations: yyy...y.
Sorted sequence cannot be determined.
Inconsistency found after xxx relations.
where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.
Sorted sequence determined after xxx relations: yyy...y.
Sorted sequence cannot be determined.
Inconsistency found after xxx relations.
where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.
Sample Input
4 6 A<B A<C B<C C<D B<D A<B 3 2 A<B B<A 26 1 A<Z 0 0
Sample Output
Sorted sequence determined after 4 relations: ABCD. Inconsistency found after 2 relations. Sorted sequence cannot be determined.
代码:
#include<cstdio> #include<iostream> #include<cstring> #include<algorithm> #include<queue> #include<stack> #include<vector> #include<map> #include<cmath> const int maxn=1e5+5; typedef long long ll; using namespace std; vector<int>vec[30]; int n,m; int du[30]; int chu[30]; int du1[30]; int flag; vector<int>ans1; void Tpsort() priority_queue<int,vector<int>,greater<int> >q; priority_queue<int>q1; int s=0; for(int t=0;t<n;t++) if(chu[t]==0&&du[t]==0) s=1; for(int t=0;t<n;t++) du1[t]=du[t]; for(int t=0;t<n;t++) if(du1[t]==0) q.push(t); q1.push(t); vector<int>ans,ans2; while(!q.empty()) int now=q.top(); int now2=q1.top(); q.pop(); q1.pop(); ans.push_back(now); ans2.push_back(now2); for(int t=0;t<vec[now].size();t++) int next=vec[now][t]; du1[next]--; if(du1[next]==0) q.push(next); q1.push(next); if(ans.size()!=n) flag=1; // cout<<ans.size()<<" "<<s<<endl; if(ans.size()==n&&s==0) int sss=0; for(int t=0;t<ans.size();t++) if(ans[t]!=ans2[t]) sss=1; if(sss==0) flag=2; for(int t=0;t<ans.size();t++) ans1.push_back(ans[t]); int main() while(cin>>n>>m) if(n==0&&m==0) break; for(int t=0;t<n;t++) vec[t].clear(); char str[5]; memset(du,0,sizeof(du)); memset(chu,0,sizeof(chu)); flag=0; int ss=0; int k; ans1.clear(); for(int t=1;t<=m;t++) scanf("%s",str); vec[str[0]-‘A‘].push_back(str[2]-‘A‘); du[str[2]-‘A‘]++; chu[str[0]-‘A‘]++; if(ss) continue; Tpsort(); if(flag==1) printf("Inconsistency found after %d relations.\n",t); ss=1; else if(flag==2) ss=1; printf("Sorted sequence determined after %d relations: ",t); for(int j=0;j<n;j++) printf("%c",ans1[j]+‘A‘); printf(".\n"); if(ss==0) puts("Sorted sequence cannot be determined."); return 0;
以上是关于Sorting It All Out (拓扑排序+思维)的主要内容,如果未能解决你的问题,请参考以下文章
POJ 1094: Sorting It All Out( 拓扑排序 )
POJ 1094 Sorting It All Out(拓扑排序判环)
POJ 1094 Sorting It All Out(拓扑排序+判环+拓扑路径唯一性确定)
POJ 1094-Sorting It All Out(拓扑排序)