吴裕雄--天生自然 PYTHON语言数据分析:ESA的火星快车操作数据集分析
Posted tszr
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了吴裕雄--天生自然 PYTHON语言数据分析:ESA的火星快车操作数据集分析相关的知识,希望对你有一定的参考价值。
import os import numpy as np import pandas as pd from datetime import datetime import matplotlib import matplotlib.pyplot as plt import seaborn as sns sns.set_style(‘white‘) %matplotlib inline %load_ext autoreload %autoreload 2
def to_utms(ut): return (ut.astype(np.int64) * 1e-6).astype(int) def read_merged_train_and_test_data(file_name): src_path = "F:\\\\kaggleDataSet\\\\hackathon-krakow\\\\hackathon-krakow-2017-05-27" train_path = os.path.join(src_path, "context--2014-01-01_2015-01-01--" + file_name + ".csv") train_df = pd.read_csv(train_path) test_path = os.path.join(src_path, "context--2015-01-01_2015-07-01--" + file_name + ".csv") test_df = pd.read_csv(test_path) df = pd.concat([train_df, test_df]) return convert_timestamp_to_date(df) def convert_timestamp_to_date(df, timestamp_column="ut_ms"): df[timestamp_column] = pd.to_datetime(df[timestamp_column], unit=‘ms‘) df = df.set_index(timestamp_column) df = df.dropna() return df def parse_subsystems(dmop_data): dmop_frame = dmop_data.copy() dmop_frame = dmop_frame[dmop_frame["subsystem"].str.startswith("A")] dmop_frame["device"] = dmop_frame["subsystem"].str[1:4] dmop_frame["command"] = dmop_frame["subsystem"].str[4:] dmop_frame = dmop_frame.drop("subsystem", axis=1) return dmop_frame def generate_count_in_hour_from_raw_data(raw_data, column_name): raw_frame = raw_data.copy() raw_frame["timestamp_by_hour"] = raw_frame.index.map(lambda t: datetime(t.year, t.month, t.day, t.hour)) events_by_hour = raw_frame.groupby(["timestamp_by_hour", column_name]).agg("count") events_by_hour = events_by_hour.reset_index() events_by_hour.columns = [‘timestamp_by_hour‘, column_name, ‘count‘] events_by_hour = events_by_hour.pivot(index="timestamp_by_hour", columns=column_name, values="count").fillna(0) events_by_hour.columns =["count_" + str(column_name) + "_in_hour" for column_name in events_by_hour.columns] events_by_hour.index.names = [‘ut_ms‘] return events_by_hour def important_commands(dmop_data): count_of_each_command = dmop_data["command"].value_counts() important_commands = count_of_each_command[count_of_each_command > 2000] return list(important_commands.index) def important_events(evtf_data): count_of_each_event = evtf_data["description"].value_counts() important_event_names = count_of_each_event[count_of_each_event > 1000] return list(important_event_names.index)
dmop_raw = read_merged_train_and_test_data("dmop") evtf_raw = read_merged_train_and_test_data("evtf") ltdata_raw = read_merged_train_and_test_data("ltdata") saaf_raw = read_merged_train_and_test_data("saaf") power_train_raw = convert_timestamp_to_date(pd.read_csv("F:\\\\kaggleDataSet\\\\hackathon-krakow\\\\hackathon-krakow-2017-05-27\\\\power--2014-01-01_2015-01-01.csv")) power_train_raw = power_train_raw.resample("1H").mean().dropna() power_test_raw = convert_timestamp_to_date(pd.read_csv("F:\\\\kaggleDataSet\\\\hackathon-krakow\\\\hackathon-krakow-2017-05-27\\\\sample_power_zeros--2015-01-01_2015-07-01.csv")) power_raw = pd.concat([power_train_raw, power_test_raw])
plt.figure(figsize=(20, 3)) power_raw_with_sum = power_train_raw.copy() power_raw_with_sum["power_sum"] = power_raw_with_sum.sum(axis=1) power_raw_with_sum["power_sum"].plot()
plt.figure(figsize=(20, 10)) plt.imshow(power_train_raw.values.T, aspect=‘auto‘, cmap="viridis")
dmop_devices = parse_subsystems(dmop_raw) dmop_devive_commands_by_hour = generate_count_in_hour_from_raw_data(dmop_devices, "device") dmop_devive_commands_by_hour["dmop_sum"] = dmop_devive_commands_by_hour.sum(axis=1) dmop_commands_by_hour = generate_count_in_hour_from_raw_data(dmop_devices, "command") important_command_names = important_commands(dmop_devices) important_command_names = list(map(lambda x: "count_" + x + "_in_hour", important_command_names)) dmop_commands_by_hour = dmop_commands_by_hour[important_command_names] dmop_data_per_hour = pd.concat([dmop_devive_commands_by_hour, dmop_commands_by_hour], axis=1) dmop_data_per_hour.head()
plt.figure(figsize=(20, 10)) dmop_devive_commands_by_hour["dmop_sum"].plot()
dmop_data = dmop_data_per_hour.reindex(power_raw_with_sum.index, method="nearest") dmop_with_power_data = pd.concat([power_raw_with_sum, dmop_data], axis=1) dmop_with_power_data.columns
sns.jointplot("dmop_sum", "power_sum", dmop_with_power_data)
dmop_with_power_data = dmop_with_power_data.resample("24h").mean() sns.pairplot(dmop_with_power_data, x_vars=dmop_commands_by_hour.columns[0:6], y_vars="power_sum")
sns.pairplot(dmop_with_power_data, x_vars=dmop_commands_by_hour.columns[0:6], y_vars=power_raw.columns[0:6])
important_event_names = list(filter(lambda name: (not("_START" in name) and not("_END" in name)), important_events(evtf_raw))) important_evtf = evtf_raw[evtf_raw["description"].isin(important_event_names)] important_evtf["description"].value_counts()
important_evtf_with_count = important_evtf.copy() important_evtf_with_count["count"] = 1 important_evtf_data_per_hour = generate_count_in_hour_from_raw_data(important_evtf_with_count, "description") important_evtf_data_per_hour.head()
evtf_data = important_evtf_data_per_hour.reindex(power_raw_with_sum.index, method="nearest") evtf_with_power_data = pd.concat([power_raw_with_sum, evtf_data]) evtf_with_power_data.columns
evtf_with_power_data = evtf_with_power_data.resample("24h").mean() sns.pairplot(evtf_with_power_data, x_vars=important_evtf_data_per_hour.columns[0:6], y_vars="power_sum")
sns.pairplot(evtf_with_power_data, x_vars=important_evtf_data_per_hour.columns[0:6], y_vars=power_raw.columns[0:6])
def is_start_event(description, event_type): return int((event_type in description) and ("START" in description))
msl_events = ["MSL_/_RANGE_06000KM_START", "MSL_/_RANGE_06000KM_END"] mrb_events = ["MRB_/_RANGE_06000KM_START", "MRB_/_RANGE_06000KM_END"] penumbra_events = ["MAR_PENUMBRA_START", "MAR_PENUMBRA_END"] umbra_events = ["MAR_UMBRA_START", "MAR_UMBRA_END"] msl_events_df = evtf_raw[evtf_raw["description"].isin(msl_events)].copy() msl_events_df["in_msl"] = msl_events_df["description"].map(lambda row: is_start_event(row, "MSL")) msl_events_df = msl_events_df["in_msl"] mrb_events_df = evtf_raw[evtf_raw["description"].isin(mrb_events)].copy() mrb_events_df["in_mrb"] = mrb_events_df["description"].map(lambda row: is_start_event(row, "MRB")) mrb_events_df = mrb_events_df["in_mrb"] penumbra_events_df = evtf_raw[evtf_raw["description"].isin(penumbra_events)].copy() penumbra_events_df["in_penumbra"] = penumbra_events_df["description"].map(lambda row: is_start_event(row, "PENUMBRA")) penumbra_events_df = penumbra_events_df["in_penumbra"] umbra_events_df = evtf_raw[evtf_raw["description"].isin(umbra_events)].copy() umbra_events_df["in_umbra"] = umbra_events_df["description"].map(lambda row: is_start_event(row, "UMBRA")) umbra_events_df = umbra_events_df["in_umbra"]
ltdata_raw.columns
ltdata_raw["eclipseduration_min"].plot()
saaf_raw.describe()
dmop_data = dmop_data_per_hour.reindex(power_raw.index, method="nearest") evtf_events_data = important_evtf_data_per_hour.reindex(power_raw.index, method="nearest") msl_period_events_data = msl_events_df.reindex(power_raw.index, method="pad").fillna(0) mrb_period_events_data = mrb_events_df.reindex(power_raw.index, method="pad").fillna(0) penumbra_period_events_data = penumbra_events_df.reindex(power_raw.index, method="pad").fillna(0) umbra_period_events_data = umbra_events_df.reindex(power_raw.index, method="pad").fillna(0) ltdata_data = ltdata_raw.reindex(power_raw.index, method="nearest") saaf_data = saaf_raw.reindex(power_raw.index, method="nearest")
all_data = pd.concat([power_raw, dmop_data, evtf_events_data, msl_period_events_data, mrb_period_events_data, penumbra_period_events_data, umbra_period_events_data, ltdata_data, saaf_data], axis=1) print(all_data.columns, all_data.shape)
plt.figure(figsize=(20, 10)) plt.imshow(all_data.values.T, aspect=‘auto‘, vmin=0, vmax=5, cmap="viridis")
train_set_start_date, train_set_end_date = power_train_raw.index[0], power_train_raw.index[-1]
train_data = all_data[all_data.index <= train_set_end_date].copy()
test_data = all_data.loc[power_test_raw.index].copy()
plt.figure(figsize=(20, 10)) plt.imshow(train_data.values.T, aspect=‘auto‘, vmin=0, vmax=5, cmap="viridis")
plt.figure(figsize=(20, 10)) plt.imshow(test_data.values.T, aspect=‘auto‘, vmin=0, vmax=5, cmap="viridis")
X_train = train_data[train_data.columns.difference(power_raw.columns)]
y_train = train_data[power_raw.columns]
from sklearn.model_selection import train_test_split X_train, X_validation, y_train, y_validation = train_test_split(X_train, y_train, test_size=0.3, random_state=0)
from sklearn import linear_model from sklearn.metrics import mean_squared_error
reg = linear_model.LinearRegression() reg.fit(X_train, y_train) y_validation_predicted = reg.predict(X_validation) mean_squared_error(y_validation, y_validation_predicted)
elastic_net = linear_model.ElasticNet() elastic_net.fit(X_train, y_train) y_validation_predicted = elastic_net.predict(X_validation) mean_squared_error(y_validation, y_validation_predicted)
以上是关于吴裕雄--天生自然 PYTHON语言数据分析:ESA的火星快车操作数据集分析的主要内容,如果未能解决你的问题,请参考以下文章
吴裕雄--天生自然 pythonTensorFlow自然语言处理:文本数据预处理--生成词汇表
吴裕雄--天生自然 pythonTensorFlow自然语言处理:Attention模型--测试
吴裕雄--天生自然 pythonTensorFlow自然语言处理:Seq2Seq模型--训练