pandas-06 Series和Dataframe的排序操作

Posted wenqiangit

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了pandas-06 Series和Dataframe的排序操作相关的知识,希望对你有一定的参考价值。

pandas-06 Series和Dataframe的排序操作

对pandas中的Series和Dataframe进行排序,主要使用sort_values()和sort_index()。
DataFrame.sort_values(by, axis=0, ascending=True, inplace=False, kind=‘quicksort’, na_position=‘last’)
by:列名,按照某列排序
axis:按照index排序还是按照column排序
ascending:是否升序排列
kind:选择 排序算法‘quicksort’, ‘mergesort’, ‘heapsort’, 默认是‘quicksort’,也就是快排
na_position:nan排列的位置,是前还是后‘first’, ‘last’, 默认是‘last’
sort_index() 的参数和上面差不多。

实例:

import numpy as np
import pandas as pd
from pandas import Series, DataFrame

np.random.seed(666)

s1 = Series(np.random.randn(10))
print(s1)
'''
0    0.824188
1    0.479966
2    1.173468
3    0.909048
4   -0.571721
5   -0.109497
6    0.019028
7   -0.943761
8    0.640573
9   -0.786443
dtype: float64
'''

#  为series排序的两种方式,1 用 value 来排序, 2 用 index 来排序
s2 = s1.sort_values() # 按照 value 来排序
print(s2)
'''
7   -0.943761
9   -0.786443
4   -0.571721
5   -0.109497
6    0.019028
1    0.479966
8    0.640573
0    0.824188
3    0.909048
2    1.173468
dtype: float64
'''

# axis 设置轴 的方向, ascending 设置升降序
s2 = s1.sort_values(axis = 0, ascending=False)
print(s2)
'''
2    1.173468
3    0.909048
0    0.824188
8    0.640573
1    0.479966
6    0.019028
5   -0.109497
4   -0.571721
9   -0.786443
7   -0.943761
dtype: float64
'''

# 通过 对 index 进行排序
s2.sort_index()
print(s2)
'''
2    1.173468
3    0.909048
0    0.824188
8    0.640573
1    0.479966
6    0.019028
5   -0.109497
4   -0.571721
9   -0.786443
7   -0.943761
dtype: float64
'''

# 对于 dataframe 的排序

df1 = DataFrame(np.random.randn(40).reshape(8, 5), columns=['a', 'b', 'c', 'd', 'e'])
print(df1)
'''
          a         b         c         d         e
0  0.608870 -0.931012  0.978222 -0.736918 -0.298733
1 -0.460587 -1.088793 -0.575771 -1.682901  0.229185
2 -1.756625  0.844633  0.277220  0.852902  0.194600
3  1.310638  1.543844 -0.529048 -0.656472 -0.201506
4 -0.700616  0.687138 -0.026076 -0.829758  0.296554
5 -0.312680 -0.611301 -0.821752  0.897123  0.136079
6 -0.258655  1.110766 -0.188424 -0.041489 -0.984792
7 -1.352282  0.194324  0.267239 -0.426474  1.447735
'''

# 按照 columns 进行排序, 这种做法 和 对 series的 操作 差不多
print(df1['a'].sort_values())
'''
2   -1.756625
7   -1.352282
4   -0.700616
1   -0.460587
5   -0.312680
6   -0.258655
0    0.608870
3    1.310638
Name: a, dtype: float64
'''

# 将 dataframe 按照 其中 某个列进行排序, 参数ascending来控制 升降序
print(df1.sort_values('a'))
'''
          a         b         c         d         e
2 -1.756625  0.844633  0.277220  0.852902  0.194600
7 -1.352282  0.194324  0.267239 -0.426474  1.447735
4 -0.700616  0.687138 -0.026076 -0.829758  0.296554
1 -0.460587 -1.088793 -0.575771 -1.682901  0.229185
5 -0.312680 -0.611301 -0.821752  0.897123  0.136079
6 -0.258655  1.110766 -0.188424 -0.041489 -0.984792
0  0.608870 -0.931012  0.978222 -0.736918 -0.298733
3  1.310638  1.543844 -0.529048 -0.656472 -0.201506
'''

df2 = df1.sort_values('a')
print(df2)
'''
          a         b         c         d         e
2 -1.756625  0.844633  0.277220  0.852902  0.194600
7 -1.352282  0.194324  0.267239 -0.426474  1.447735
4 -0.700616  0.687138 -0.026076 -0.829758  0.296554
1 -0.460587 -1.088793 -0.575771 -1.682901  0.229185
5 -0.312680 -0.611301 -0.821752  0.897123  0.136079
6 -0.258655  1.110766 -0.188424 -0.041489 -0.984792
0  0.608870 -0.931012  0.978222 -0.736918 -0.298733
3  1.310638  1.543844 -0.529048 -0.656472 -0.201506
'''

# 对 df2 的 索引 进行排序, 又回到之前的原本的 df2
print(df2.sort_index())
'''
          a         b         c         d         e
0  0.608870 -0.931012  0.978222 -0.736918 -0.298733
1 -0.460587 -1.088793 -0.575771 -1.682901  0.229185
2 -1.756625  0.844633  0.277220  0.852902  0.194600
3  1.310638  1.543844 -0.529048 -0.656472 -0.201506
4 -0.700616  0.687138 -0.026076 -0.829758  0.296554
5 -0.312680 -0.611301 -0.821752  0.897123  0.136079
6 -0.258655  1.110766 -0.188424 -0.041489 -0.984792
7 -1.352282  0.194324  0.267239 -0.426474  1.447735
'''

以上是关于pandas-06 Series和Dataframe的排序操作的主要内容,如果未能解决你的问题,请参考以下文章

pandas一些基本操作(DataFram和Series)_1

pandas一些基本操作(DataFram和Series)_2

pandas-06 Series和Dataframe的排序操作

1DadaFrame和Series创建

Python Pandas 数据框创建

Python Pandas 数据框创建