深度自动编码器
Posted jiangkejie
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了深度自动编码器相关的知识,希望对你有一定的参考价值。
深度自动编码器由两个对称的深度置信网络组成,其中一个深度置信网络通常有四到五个浅层,构成负责编码的部分,另一个四到五层的网络则是解码部分。
这些层都是受限玻尔兹曼机(RBM)(注:也可以采用自编码器预训练?),即构成深度置信网络的基本单元,它们有一些特殊之处,我们将在下文中介绍。以下是简化的深度自动编码器架构示意图,下文会作具体说明。
处理基准数据集MNIST时,深度自动编码器会在每个RBM之后使用二进制变换。深度自动编码器还可以用于包含实数数据的其他类型的数据集,此时编码器中的RBM可以改用高斯修正变换。
编码
让我们用以下的示例来描绘一个编码器的大致结构:
784 (输入) ----> 1000 ----> 500 ----> 250 ----> 100 -----> 30
假设进入网络的输入是784个像素(MNIST数据集中28 x 28像素的图像),那么深度自动编码器的第一层应当有1000个参数,即相对较大。 (注意这里的解释:首层的扩张!)
这可能会显得有违常理,因为参数多于输入往往会导致神经网络过拟合。
在这个例子当中, 增加参数从某种意义上来看也就是增加输入本身的特征,而这将使经过自动编码的数据最终能被解码。
其原因在于每个层中用于变换的sigmoid置信单元的表示能力。sigmoid置信单元无法表示与实数数据等量的信息和差异,而补偿方法之一就是扩张第一个层。
各个层将分别有1000、500、250、100个节点,直至网络最终生成一个30个数值长的向量。这一30个数值的向量是深度自动编码器负责预定型的前半部分的最后一层,由一个普通的RBM生成,而不是一个通常会出现在深度置信网络末端的Softmax或逻辑回归分类输出层。
解码
这30个数值是28 x 28像素图像被编码后的版本。深度自动编码器的后半部分会学习如何解码这一压缩后的向量,将其作为输入一步步还原。
深度自动编码器的解码部分是一个前馈网络,它的各个层分别有100、250、500和1000个节点。 层的权重以随机方式初始化。
定型细节
在解码器的反向传播阶段,学习速率应当降低,减慢速度:大约取在1e-3和1e-6之间,具体取决于处理的是二进制数据还是连续数据(分别对应区间的两端)。
应用案例
图像搜索
如上文所述,深度自动编码器可以将图像压缩为30个数值的向量。
因此图像搜索的过程就变成:上传图像,搜索引擎将图像压缩为30个数值,然后将这个向量与索引中的所有其他向量进行比较。
包含相似数值的向量将被返回,再转换为与之匹配的图像,成为搜索查询的结果。
数据压缩
图像压缩更广泛的应用是数据压缩。正如Geoff Hinton在这篇论文中所述,深度自动编码器可用于语义哈希。
主题建模和信息检索(IR)
深度自动编码器可用于主题建模,即以统计学方式对分布于一个文档集合中的抽象主题建模。
这是沃森等问答系统的一个重要环节。
简而言之,集合中的每篇文档会被转换为一个词袋(即一组词频),而这些词频会被缩放为0到1之间的小数,可以视之为词在文档中出现的概率。
缩放后的词频被输入由受限玻尔兹曼机堆叠构成的深度置信网络,而受限玻尔兹曼机本身就是一种前馈式反向传播自动编码器。这些深度置信网络(DBN)通过一系列sigmoid变换将文档映射至特征空间,从而把每篇文档压缩为10个数值。
每篇文档的数值组,即向量会被引入同一个向量空间,测量它到其他各个文档向量的距离。彼此接近的文档向量大致上可以归为同一个主题。
例如,一篇文档可能是“问题”,而其他的文档可能是“回答”,软件可以通过在向量空间中测量距离来完成这样的匹配。
代码示例
深度自动编码器可以通过拓展Deeplearning4j的MultiLayerNetwork类来构建。
代码大致如下:
final int numRows = 28;
final int numColumns = 28;
int seed = 123;
int numSamples = MnistDataFetcher.NUM_EXAMPLES;
int batchSize = 1000;
int iterations = 1;
int listenerFreq = iterations/5;
log.info("Load data....");
DataSetIterator iter = new MnistDataSetIterator(batchSize,numSamples,true);
log.info("Build model....");
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.seed(seed)
.iterations(iterations)
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
.list(10)
.layer(0, new RBM.Builder().nIn(numRows * numColumns).nOut(1000).lossFunction(LossFunctions.LossFunction.RMSE_XENT).build())
.layer(1, new RBM.Builder().nIn(1000).nOut(500).lossFunction(LossFunctions.LossFunction.RMSE_XENT).build())
.layer(2, new RBM.Builder().nIn(500).nOut(250).lossFunction(LossFunctions.LossFunction.RMSE_XENT).build())
.layer(3, new RBM.Builder().nIn(250).nOut(100).lossFunction(LossFunctions.LossFunction.RMSE_XENT).build())
.layer(4, new RBM.Builder().nIn(100).nOut(30).lossFunction(LossFunctions.LossFunction.RMSE_XENT).build())
//编码停止
.layer(5, new RBM.Builder().nIn(30).