AtCoder Grand Contest 036D - Negative Cycle
Posted ymzqwq
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了AtCoder Grand Contest 036D - Negative Cycle相关的知识,希望对你有一定的参考价值。
神仙题?反正我是完全想不到哇QAQ
这场AGC真的很难咧\(\times 10086\)
\(\bf Description\)
一张 \(n\) 个点的图,\(i\) 到 \(i+1\) 有连边。
现在来了个Snuke,他会给所有 \((i,j) ,i \ne j\) 连边,如果 \(i<j\) ,边权为 \(-1\) ,否则为 \(1\) 。
然鹅Ringo不想要图里有负环,所以他会删去Snuke加的一些边,使得图中没有负环,删除一条边有个代价,问最小的删边代价。\(3 \leq n \leq 500\)
\(\bf Solution\)
(官方题解是从 \(0\) 标号的,我是从 \(1\) 标号的,所以有一点点不一样)
对于一个没有负环的图,我们可以弄出这样一个数组 \(p\) 满足
- 对于任意 \(i\) 到 \(j\) 的边,满足 \(p_j \leq p_i + weight(i,j)\),(weight是权值,不是代价)
显然这个 \(p_i\) 是存在的,比如说是 \(1\) 到 \(i\) 的最短路。
然后令 \(q_i=p_i-p_i+1\) ,于是
- 对于一条 \(i → j (i>j)\) 的边,必须满足 \(p_j \leq p_i+1\),即 \(q_j+q_j+1+ \cdots + q_i-1 \leq 1\)
- 对于一条 \(i → j (i<j)\) 的边,必须满足 \(p_j \leq p_i-1\),即 \(q_i+q_i+1+ \cdots + q_j-1 \geq 1\)
可以发现只用考虑 \(0 \leq q_i \leq 1\)的情况 。
现在问题就简单了,对于一个 \(q\) ,只要把不符合上述条件的边都删掉就行。
用 \(f[i][j]\) 长度为 \(j\) 的数组里最后一个 \(1\) 在 \(j\) ,倒数第二个在 \(i\) ,的最小删边代价。(和官方题解是反的)
当我们从 \(f[i][j]\) 转移到 \(f[j][k]\) 时,要删去这样两种边:
- \(b → a \ (b>a), i<a \leq j, b>k\) (因为 \(b\) 到 \(a\) 有两个 \(1\) 了所以就不行)
- \(a → b, j<a<b \leq k\) (因为 \(a\) 到 \(b\) 没有 \(1\) 了所以就不行)
用前缀和就可以 \(O(1)\) 转移啦。
时间复杂度 \(O(n^3)\)
具体实现的话,用 \(w[i][j]\) 表示 \(1 \leq a \leq i , j \leq b \leq n\) ,所有 \(b → a\) 边的权值和
\(vv[i][j]\) 表示 \(i \leq a < b \leq j\) ,所有 \(a → b\) 边的权值和。
预处理一下就可以转移了。
另 \(q_0\) 和 \(q_n+1\) 强制为 \(1\) 可以省去对边界的特判。
#include<bits/stdc++.h>
#define LL long long
#define fr(i,x,y) for(int i=(x);i<=(y);i++)
#define rf(i,x,y) for(int i=(x);i>=(y);i--)
#define frl(i,x,y) for(int i=(x);i<(y);i++)
using namespace std;
const int N=505;
const int p=998244353;
int n;
int a[N][N];
LL w[N][N],vv[N][N];
LL f[N][N];
void read(int &x) scanf("%d",&x);
void read(LL &x) scanf("%lld",&x);
LL vwv(int a,int b,int c)
return w[b][c]-w[a-1][c];
void chkmin(LL &x,LL y)
if (y<x) x=y;
int main()
read(n);
fr(i,1,n)
fr(j,1,n)
if (i!=j) read(a[i][j]);
fr(i,1,n)
rf(j,n,i+1)
w[i][j]=w[i][j+1];
fr(k,1,i) w[i][j]+=a[j][k];
fr(i,1,n)
fr(j,i+1,n+1)
vv[i][j]=vv[i][j-1];
fr(k,i,j-1) vv[i][j]+=a[k][j];
memset(f,0x3f,sizeof f);
f[0][0]=0;
fr(i,0,n)
fr(j,i,n)
if (f[i][j]<1e18)
fr(k,j+1,n+1)
chkmin(f[j][k],f[i][j]+vv[j+1][k]+vwv(i+1,j,k+1));
LL ans=1e18;
fr(i,0,n) chkmin(ans,f[i][n+1]);
cout<<ans<<endl;
return 0;
以上是关于AtCoder Grand Contest 036D - Negative Cycle的主要内容,如果未能解决你的问题,请参考以下文章