包logging模块hashlib模块openpyxl模块深浅拷贝

Posted 竣~

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了包logging模块hashlib模块openpyxl模块深浅拷贝相关的知识,希望对你有一定的参考价值。

包、logging模块、hashlib模块、openpyxl模块、深浅拷贝

一、包

1、模块与包

模块的三种来源:

1、内置的

2、第三方的

3、自定义的

模块的四种表现形式:

1、py文件

2、共享库

3、文件夹(一系列模块的结合体),即包

4、C++编译的连接到Python内置的

2、模块的导入过程

先产生一个执行文件的名称空间

1、创建模块文件的名称空间

2、执行模块文件中的代码,将产生的名字放入模块的名称空间中

3、在执行文件中拿到一个指向模块名称空间的名字

3、什么是包

它是一系列模块文件的结合体,表示形式就是一个文件夹,该文件夹内部通常会有一个__init__.py文件,包的本质还是一个模块。

4、包的导入过程

先产生一个执行文件的名称空间

1、创建包下面的__init__.py文件的名称空间

2、执行包下面的__init__.py文件中的代码,将产生的名字放入包下面的__init__.py文件名称空间中

3、在执行文件中拿到一个不指向包下面的__init__.py文件名称空间的名字

在导入与语句中.号的左边肯定是一个包(文件夹)

5、包的使用

当你作为包的设计者来说

1、当模块的功能特别多的情况下,应该分文件管理

2、每个模块之间为了避免后期包改名的问题,你可以使用相对导入(包里面的文件都应该是被导入的模块)

3、站在包的开发者:如果使用绝对路径来管理自己写的模块,那么他只需要永远以包的路径为基准依次导入模块

4、站在包的使用者:你必须得将包所在的那个文件夹路径添加到system path中(***无法省略)

5、Python2如果要导入包,包下面必须要有__init__.py文件

6、Python3如果要导入包,包下面没有__init__.py文件也不会报错

7、当你在删除程序不必要的文件的时候,千万不要随意删除__init__.py文件

二、logging模块(日志模块)

1、日志级别

import logging
logging.debug(\'debug message\')  # 10
logging.info(\'info message\')  # 20
logging.warning(\'warning message\')  # 30
logging.error(\'error message\')  # 40
logging.critical(\'critical message\')  # 50

默认情况下Python的logging模块将日志打印到了标准输出中,且只显示了大于等于WARNING级别的日志,这说明默认的日志级别设置为WARNING(日志级别等级CRITICAL>ERROR>WARNING>INFO>DEBUG),默认的日志格式为日志级别:Logger名称:用户输出消息

2、日志对象

1、logger对象:负责产生日志
logger = logging.getLogger("转账记录")

2、filter对象:过滤日志(了解)

3、handler对象:控制日志输出的位置(文件/终端)
hd1 = logging.FileHandler(\'a1.log\',encoding=\'utf-8\')  # 输出到文件中
hd2 = logging.FileHandler(\'a2.log\',encoding=\'utf-8\')  # 输出到文件中
hd3 = logging.StreamHandler()  # 输出到终端中

4、formatter对象:规定日志内容的格式
fm1 = logging.Formatter(
        fmt=\'%(asctime)s - %(name)s - %(levelname)s - %(module)s: %(message)s\',
        datefmt=\'%Y-%m-%d %H:%M:%S %p\',
)
fm2 = logging.Formatter(
        fmt=\'%(asctime)s - %(name)s: %(message)s\',
        datefmt=\'%Y-%m-%d\',
)

5、给logger对象绑定handler对象
logger.addHandler(hd1)
logger.addHandler(hd2)
logger.addHandler(hd3)

6、给handler绑定formate对象
hd1.setFormatter(fm1)
hd2.setFormatter(fm2)
hd3.setFormatter(fm3)

7、设置日志等级
logger.setLevel(20)

8、记录日志
logger.debug(\'写了半天 好累啊 好热啊 好像释放\')

![https://files-cdn.cnblogs.com/files/DcentMan/微信图片_20190719221602.bmp)

3、logging配置字典

import os
import logging.config
# 定义日志输出格式
standard_format = \'[%(asctime)s][%(threadName)s:%(thread)d][task_id:%(name)s][%(filename)s:%(lineno)d][%(levelname)s][%(message)s]\' #其中name为getlogger指定的名字
simple_format = \'[%(levelname)s][%(asctime)s][%(filename)s:%(lineno)d]%(message)s\'
# 下面两个变量对应的值,需要你手动修改
logfile_dir = os.path.dirname(__file__)  # log文件的目录
logfile_name = \'a3.log\'  #log文件名
# 如果不存在定义的日志目录就创建一个
if not os.path.isdir(logfile_dir):
    os.mkdir(logfile_dir)
# log文件的全路径
logfile_path = os.path.join(logfile_dir,logfile_name)
# log配置字典
LOGGING_DIR = LOGGING_DIC = {
    \'version\': 1,
    \'disable_existing_loggers\': False,
    \'formatters\': {
        \'standard\': {
            \'format\': standard_format
        },
        \'simple\': {
            \'format\': simple_format
        },
    },
    \'filters\': {},  # 过滤日志
    \'handlers\': {
        #打印到终端的日志
        \'console\': {
            \'level\': \'DEBUG\',
            \'class\': \'logging.StreamHandler\',  # 打印到屏幕
            \'formatter\': \'simple\'
        },
        #打印到文件的日志,收集info及以上的日志
        \'default\': {
            \'level\': \'DEBUG\',
            \'class\': \'logging.handlers.RotatingFileHandler\',  # 保存到文件
            \'formatter\': \'standard\',
            \'filename\': logfile_path,  # 日志文件
            \'maxBytes\': 1024*1024*5,  # 日志大小 5M
            \'backupCount\': 5,
            \'encoding\': \'utf-8\',  # 日志文件的编码,再也不用担心中文log乱码了
        },
    },
    \'loggers\': {
        #logging.getLogger(__name__)拿到的logger配置
        \'\': {
            \'handlers\': [\'default\', \'console\'],  # 这里把上面定义的两个handler都加上,即log数据既写入文件又打印到屏幕
            \'level\': \'DEBUG\',
            \'propagate\': True,  # 向上(更高level的logger)传递
        },  # 当键不存在的情况下 默认都会使用该k:v配置
    },
}
# 使用日志字典配置
logging.config.dictConfig(LOGGING_DIC)  # 自动加载字典中的配置
logger1 = logging.getLogger(\'xxx\')  # 输入的名字在上面的字典中可以不存在,但是字典的key必须是\'\'
logger1.debug(\'好好地 不要浮躁 努力就有收获\')

三、hashlib模块(加密模块)

1、hashlib模块的加密过程非常复杂,解密难度很大

2、hashlib模块下的加密算法非常多,不同的算法,使用的方法是相同的,密文的长度越长,内部对应的算法越复杂,但是时间消耗越长,占用空间越大,通常情况下使用md5算法

3、hashlib模块加密过程程序实现

import hashlib
md = hashlib.md5()  # 生成一个帮你造密文的对象
md.update(\'hello\'.encode(\'utf-8\'))  # 往对象里传明文数据 update只能接收bytes类型的数据
print(md.hexdigest())  # 获取明文数据对应的密文

4、传入的内容可以分多次传入,只要传入的内容相同,那么生成的密文肯定相同

import hashlib
md = hashlib.md5()
md.update(b\'areyouok?\')
print(md.hexdigest())
md1 = hashlib.md5()
md1.update(b\'are\')
md1.update(b\'you\')
md1.update(b\'ok?\')
print(md1.hexdigest())
# 两次打印的结果相同

5、hashlib模块除了用于密码的密文存储,还可以用于校验文件内容是否一致

6、加盐处理,加盐的内容不定,可以改变,还可以动态加盐,比如在注册成功后,保存密码时在密码前添加几位用户名中的字符。

import hashlib 
def get_md5(data):
    md = hashlib.md5()
    md.update(\'加盐\'.encode(\'utf-8\'))
    md.update(data.encode(\'utf-8\'))
    return md.hexdigest()
password = input(\'password>>>:\')
res = get_md5(password)
print(res)

四、openpyxl模块(最近比较火的操作Excel表格的模块)

1、03版本之前,Excel文件的后缀名叫xls;03版本之后,Excel文件的后缀名叫xlsx

2、之前操作Excel文件的模块是xlwd(写)和xlrt(读),xlwd和xlrt既支持03版本之前的Excel文件也支持03版本之后的Excel文件。openpyxl只支持03版本之后的xlsx文件

3、写文件

from openpyxl import Workbook
wb = Workbook()  # 先生成一个工作簿
wb1 = wb.create_sheet(\'sheet1\',0)  # 在指定位置创建一个表单页
wb2 = wb.create_sheet(\'sheet2\')
wb1.title = \'login\'  # 可以通过title方法对已生成的表单页重命名
wb1[\'A3\'] = 666  # 在指定位置添加值 A是列,3是行
wb1[\'A4\'] = 111
wb1[\'A5\'] = \'=sum(A3:A4)\'  # 通过sum函数求和

wb1.append([\'username\',\'age\',\'hobby\'])  # 在第一行添加表头,用来标识每一列数据的意义
wb1.append([\'jason\',18,\'study\'])
wb1.append([\'tank\',72,\'吃生蚝\'])
wb1.append([\'egon\',84,\'女教练\'])
wb1.append([\'sean\',23,\'会所\'])
wb1.append([\'nick\',28,])
wb1.append([\'nick\',\'\',\'秃头\'])  # 以空字符表示该位置为空

wb.save(\'test.xlsx\')  # 保存新建的文件

4、读文件

from openpyxl import load_workbook

wb = load_workbook(\'test.xlsx\',read_only=True, data_only=True)
print(wb)
# <openpyxl.workbook.workbook.Workbook object at 0x032CD0D0>
print(wb.sheetnames)
# [\'login\', \'Sheet\', \'sheet2\']
print(wb[\'login\'][\'A3\'].value)  # 666
print(wb[\'login\'][\'A4\'].value)  # 111
print(wb[\'login\'][\'A5\'].value)  # None
# 如果没有指定data_only=True参数,且你并没有打开文件修改其中的内容,A5打印出的内容就会是=sum(A3:A4)
# 通过代码产生的excel表格必须经过人为操作之后才能读取出函数计算出来的结果值

res = wb[\'login\']
print(res)  # <openpyxl.worksheet._read_only.ReadOnlyWorksheet object at 0x03FDC250>
get1 = res.rows
for i in ge1:
    for j in i:
        print(j.value)
\'\'\'
print(j.value)的值
None
None
666
111
None
\'\'\'
\'\'\'
print(j)的值
<EmptyCell>
<EmptyCell>
<ReadOnlyCell \'login\'.A3>
<ReadOnlyCell \'login\'.A4>
<ReadOnlyCell \'login\'.A5>
\'\'\'

五、深浅拷贝

1、Python内置有浅拷贝copy方法,要想进行深拷贝操作,需要导入copy模块

2、copy模块中,浅拷贝用copy.copy(),深拷贝用copy.deepcopy()

3、深浅拷贝的区别在于可变类型数据的拷贝,浅拷贝内的可变数据还是指向原来的值,所以对原数据中的可变类型进行修改时,拷贝后的数据也会跟着变。而深拷贝内的可变数据指向一个新的与原来数据相同的值,所以改变原数据中的可变数据时,拷贝后的数据并不会改变。

![https://files-cdn.cnblogs.com/files/DcentMan/微信图片_20190720004335.bmp)

![https://files-cdn.cnblogs.com/files/DcentMan/微信图片_20190720003941.bmp)

以上是关于包logging模块hashlib模块openpyxl模块深浅拷贝的主要内容,如果未能解决你的问题,请参考以下文章

包,logging模块,hashlib模块,openpyxl模块,深拷贝,浅拷贝

函数知识点 1.包 2.hashlib模块 --- 摘要算法模块 3.logging模块 4.openpyxl模块 5.深浅拷贝 # 17

第三十六篇 hashlib模块hmac模块和logging模块

python hashlib模块 logging模块

hashlib模块,configparse模块,logging模块

python模块: hashlib模块, configparse模块, logging模块