第1节 storm编程:2storm的基本介绍

Posted mediocreworld

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了第1节 storm编程:2storm的基本介绍相关的知识,希望对你有一定的参考价值。

课程大纲:

1、storm的基本介绍

2、storm的架构模型

3、storm的安装

4、storm的UI管理界面

5、storm的编程模型

6、storm的入门程序

7、storm的并行度

8、storm的消息的分发策略

9、strom与kafka的集成  搞定

10、            实时看板综合案例

 

 

 

1、 storm的基本介绍

storm的官网:http://storm.apache.org/

 

twitter公司开源提供的,最早的一个版本是0.8.0,处理速度比较快

认知的海岛越大,无知的海岸线越长

 

Storm是一个开源的分布式实时计算系统,可以简单、可靠的处理大量的数据流。Storm有很多使用场景:如实时分析,在线机器学习,持续计算,分布式RPC,ETL等等。Storm支持水平扩展,具有高容错性,保证每个消息都会得到处理,而且处理速度很快(在一个小集群中,每个结点每秒可以处理数以百万计的消息)。Storm的部署和运维都很便捷,而且更为重要的是可以使用任意编程语言来开发应用。
Storm有如下特点:

  • 编程模型简单

在大数据处理方面相信大家对hadoop已经耳熟能详,基于Google Map/Reduce来实现的Hadoop为开发者提供了map、reduce原语,使并行批处理程序变得非常地简单和优美。同样,Storm也为大数据的实时计算提供了一些简单优美的原语,这大大降低了开发并行实时处理的任务的复杂性,帮助你快速、高效的开发应用。

  • 可扩展

在Storm集群中真正运行topology的主要有三个实体:工作进程、线程和任务。Storm集群中的每台机器上都可以运行多个工作进程,每个工作进程又可创建多个线程,每个线程可以执行多个任务,任务是真正进行数据处理的实体,我们开发的spout、bolt就是作为一个或者多个任务的方式执行的。
因此,计算任务在多个线程、进程和服务器之间并行进行,支持灵活的水平扩展。

  • 高可靠性

Storm可以保证spout发出的每条消息都能被“完全处理”,这也是直接区别于其他实时系统的地方,如S4。
请注意,spout发出的消息后续可能会触发产生成千上万条消息,可以形象的理解为一棵消息树,其中spout发出的消息为树根,Storm会跟踪这棵消息树的处理情况,只有当这棵消息树中的所有消息都被处理了,Storm才会认为spout发出的这个消息已经被“完全处理”。如果这棵消息树中的任何一个消息处理失败了,或者整棵消息树在限定的时间内没有“完全处理”,那么spout发出的消息就会重发。
考虑到尽可能减少对内存的消耗,Storm并不会跟踪消息树中的每个消息,而是采用了一些特殊的策略,它把消息树当作一个整体来跟踪,对消息树中所有消息的唯一id进行异或计算,通过是否为零来判定spout发出的消息是否被“完全处理”,这极大的节约了内存和简化了判定逻辑,后面会对这种机制进行详细介绍。
这种模式,每发送一个消息,都会同步发送一个ack/fail,对于网络的带宽会有一定的消耗,如果对于可靠性要求不高,可通过使用不同的emit接口关闭该模式。
上面所说的,Storm保证了每个消息至少被处理一次,但是对于有些计算场合,会严格要求每个消息只被处理一次,幸而Storm的0.7.0引入了事务性拓扑,解决了这个问题,后面会有详述。

  • 高容错性

如果在消息处理过程中出了一些异常,Storm会重新安排这个出问题的处理单元。Storm保证一个处理单元永远运行(除非你显式杀掉这个处理单元)。
当然,如果处理单元中存储了中间状态,那么当处理单元重新被Storm启动的时候,需要应用自己处理中间状态的恢复。

  • 支持多种编程语言

除了用java实现spout和bolt,你还可以使用任何你熟悉的编程语言来完成这项工作,这一切得益于Storm所谓的多语言协议。多语言协议是Storm内部的一种特殊协议,允许spout或者bolt使用标准输入和标准输出来进行消息传递,传递的消息为单行文本或者是json编码的多行。
Storm支持多语言编程主要是通过ShellBolt, ShellSpout和ShellProcess这些类来实现的,这些类都实现了IBolt 和 ISpout接口,以及让shell通过java的ProcessBuilder类来执行脚本或者程序的协议。
可以看到,采用这种方式,每个tuple在处理的时候都需要进行json的编解码,因此在吞吐量上会有较大影响。

  • 支持本地模式

Storm有一种“本地模式”,也就是在进程中模拟一个Storm集群的所有功能,以本地模式运行topology跟在集群上运行topology类似,这对于我们开发和测试来说非常有用。

  • 高效

 

与mapreduce相比较:

storm比较快,mapreduce比较慢

strom是流式处理 ,mapreduce是一堆数据处理一次

 

最终要的特点:流式处理,处理速度快

以上是关于第1节 storm编程:2storm的基本介绍的主要内容,如果未能解决你的问题,请参考以下文章

Storm 第一章 核心组件及编程模型

从Storm到Flink:大数据处理的开源系统及编程模型

Java编程的逻辑 (17) - 继承实现的基本原理

精通高级RxJava 2响应式编程思想

1 storm基本概念 + storm编程规范及demo编写

Storm介绍及核心组件和编程模型