hdu2588 gcd 欧拉函数

Posted 当蜗牛有了理想

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了hdu2588 gcd 欧拉函数相关的知识,希望对你有一定的参考价值。

GCD

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1567    Accepted Submission(s): 751


Problem Description
The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.
 

 

Input
The first line of input is an integer T(T<=100) representing the number of test cases. The following T lines each contains two numbers N and M (2<=N<=1000000000, 1<=M<=N), representing a test case.
 

 

Output
For each test case,output the answer on a single line.
 

 

Sample Input
3 1 1 10 2 10000 72
 

 

Sample Output
1 6 260
 题目大意:
数据量太大,用常规方法做是行不通的。后来看了别人的解题报告说,先找出N的约数x,

          并且gcd(x,N)>= M,结果为所有N/x的欧拉函数之和。

          因为x是N的约数,所以gcd(x,N)=x >= M;

   设y=N/x,y的欧拉函数为小于y且与y互质的数的个数。

   设与y互质的的数为p1,p2,p3,…,p4

   那么gcd(x* pi,N)= x >= M。

          也就是说只要找出所有符合要求的y的欧拉函数之和就是答案了。

至于为何用ans+=Euler(n/i0而不是直接加n/i,这便是为了查重,防止出现重复
只加满足gcd(k*x,n)==x的个数,不过如果直接遍历找约数遍历的量太大,同样会
TLE,因此可以把区间右坐标变成sqrt(n),同时判断i和n/i即可,特别注意num*num=n
的情况要单独处理。
代码:
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
typedef long long LL;
int kase=0;
LL Euler(LL n)
{
    LL ans=n;
    for(int i=2;i*i<=n;i++)
    {
        if(n%i==0)
        {
            ans-=ans/i;
            while(n%i==0) n/=i;
        }
    }
  if(n>1) ans-=ans/n;
  return ans;
}
int main()
{
    int t;
    cin>>t;
    __int64 n,m;
    while(t--)
    {
        kase=0;
        scanf("%I64d%I64d",&n,&m);
        int num=(int)sqrt(n+0.5);
        //cout<<num<<endl;
        for(int i=1;i<num;i++)
        {
            if(n%i==0)
            {
                if(n/i>=m)
                kase+=Euler(i);
                if(i>=m)
                kase+=Euler(n/i);
            }
        }
        //cout<<kase<<endl;
       // cout<<Euler(100)<<endl;
        if(num*num==n&&num>=m) kase+=Euler(num);
        cout<<kase<<endl;
    }
    return 0;
}
 

以上是关于hdu2588 gcd 欧拉函数的主要内容,如果未能解决你的问题,请参考以下文章

[HDU2588]GCD 欧拉函数

hdu2588-GCD-(欧拉函数+分解因子)

GCD(欧拉函数)

hdu 2588(简单的欧拉

HDU1695-GCD(数论-欧拉函数-容斥)

hdu (欧拉函数+容斥原理) GCD