gray灰度标签图转coco数据集
Posted yanghailin
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了gray灰度标签图转coco数据集相关的知识,希望对你有一定的参考价值。
import cv2
import os
import numpy as np
import json
# / *0
# beijing
# *1
# yalibiaoyuanhuan
# *2
# yellow
# *3
# green
# *4
# red
# *5
# blue
# *6
# indicator
# * /
###########################################################################################
## LABEL: yalibiao
# my_label = "background":0,
# "yuanhuan":1,
# "yellow":2,
# "green":3,
# "red":4,
# "blue":5,
# "indicator":6
my_label = "background":0,
"0":1,
"1":2,
"2":3,
"3":4,
"4":5,
"5":6,
"6":7,
"7":8,
"8":9,
"9":10,
"A":11,
"B":12,
"C": 13,
"D": 14,
"E": 15,
"F": 16,
"G": 17,
"H": 18,
"J": 19,
"K": 20,
"L": 21,
"M": 22,
"N": 23,
"P": 24,
"R": 25,
"S": 26,
"T": 27,
"U": 28,
"V": 29,
"W": 30,
"X": 31,
"Y": 32,
"Z": 33
def gray2src_name(gray_img_name):
#gray_name: gray_sz_ylb_0.png
#src_name: src_sz_ylb_0.png
img_name = gray_img_name.replace("gray", "src")
#img_name = img_name.replace("png", "jpg")
return img_name
#############################################################################################
coco = dict()
coco['images'] = []
coco['type'] = 'instances'
coco['annotations'] = []
coco['categories'] = []
category_set = dict()
image_set = set()
category_item_id = 0
image_id = 20190000000
annotation_id = 0
def addLabelItem(my_label):
my_label = sorted(my_label.items(),key=lambda item:item[1])
for val in my_label:
category_item = dict()
category_item['supercategory'] = 'none'
category_item_id = val[1]
if 0 == category_item_id:
continue
category_item['id'] = category_item_id
category_item['name'] = val[0]
coco['categories'].append(category_item)
def addImgItem(file_name, img):
global image_id
if file_name is None:
raise Exception('Could not find filename tag in xml file.')
if img is None:
raise Exception('Could not find img.')
image_id += 1
image_item = dict()
image_item['id'] = image_id
image_item['file_name'] = file_name
image_item['width'] = img.shape[1] #size['width']
image_item['height'] = img.shape[0] #size['height']
coco['images'].append(image_item)
image_set.add(file_name)
return image_id
def addAnnoItem( image_id, category_id, area, seg, bbox):
bbox = list(bbox)
global annotation_id
annotation_item = dict()
annotation_item['segmentation'] = []
annotation_item['segmentation'].append(seg)
annotation_item['area'] = area
annotation_item['iscrowd'] = 0
annotation_item['ignore'] = 0
annotation_item['image_id'] = image_id
annotation_item['bbox'] = bbox
annotation_item['category_id'] = category_id
annotation_id += 1
annotation_item['id'] = annotation_id
coco['annotations'].append(annotation_item)
def gray_img2coco(root):
addLabelItem(my_label)
list_file = os.listdir(root)
num_class = len(my_label)
cnt = 0
for img_name in list_file:
cnt += 1
print("cnt=%d, img_name=%s"%(cnt,img_name))
img_path = root + img_name
img_gray = cv2.imread(img_path,-1)
if len(img_gray.shape) == 3:
img_gray = cv2.cvtColor(img_gray, cv2.COLOR_BGR2GRAY)
#points = np.array(np.where(6 == img_gray)).transpose((1, 0))[:, ::-1]
height = img_gray.shape[0]
width = img_gray.shape[1]
#img_name = img_name.replace("gray","src")
img_name = gray2src_name(img_name)
current_image_id = addImgItem(img_name, img_gray)
for current_category_id in range(1,num_class):
img_bi = np.zeros(img_gray.shape,dtype='uint8')
img_bi[img_gray == current_category_id] = 255
my_contours,_ = cv2.findContours(img_bi,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE)
for c in my_contours:
area_t = cv2.contourArea(c)
#print("area=%d"%(cv2.contourArea(c)))
# print("L_pt_size=%d"%(len(L_pt)))
if 0 == len(c) or area_t < 20:
continue
L_pt = c
# x,y,w,h
bbox = cv2.boundingRect(L_pt)
x1,y1,w1,h1 = bbox
if x1<0 or y1<0 or x1+w1>width or y1+h1>height:
continue
seg = []
for val in L_pt:
#print (val)
x = val[0][0]
y = val[0][1]
seg.append(int(x)) ##zhongyao
seg.append(int(y))
# print("x=%d,y=%d"%(x,y))
addAnnoItem(current_image_id, current_category_id, area_t, seg, bbox)
# #m_t = np.ones(img_gray.shape,np.uint8)*255
# m_t = np.zeros([img_gray.shape[0], img_gray.shape[1], 3], dtype='uint8')
# cv2.drawContours(m_t,[L_pt],0,(255,0,0),1)
# cv2.imshow("m_t",m_t)
# cv2.imshow("img_bi", img_bi)
# cv2.imshow("gray",img_gray*20)
# cv2.waitKey(0)
if __name__ == '__main__':
root_gray_img = "/maskrcnn-benchmark/datasets/coco/tmp/val_gray/"
# instances_train2014.json instances_val2014.json
json_file = "maskrcnn-benchmark/datasets/coco/tmp/instances_val2014.json"
gray_img2coco(root_gray_img)
json.dump(coco,open(json_file,'w'))
以上是关于gray灰度标签图转coco数据集的主要内容,如果未能解决你的问题,请参考以下文章
labelme使用labelme2voc.py忽略部分标签生成VOC/coco类型数据集(Ignore a label in json file)