中文检索和分词
Posted mcc61
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了中文检索和分词相关的知识,希望对你有一定的参考价值。
1.什么是Haystack
Haystack是django的开源全文搜索框架(全文检索不同于特定字段的模糊查询,使用全文检索的效率更高 ),该框架支持**Solr**,**Elasticsearch**,**Whoosh**, ***Xapian*搜索引擎它是一个可插拔的后端(很像Django的数据库层),所以几乎你所有写的代码都可以在不同搜索引擎之间便捷切换
全文检索不同于特定字段的模糊查询,使用全文检索的效率更高,并且能够对于中文进行分词处理
whoosh:纯Python编写的全文搜索引擎,虽然性能比不上sphinx、xapian、Elasticsearc等,但是无二进制包,程序不会莫名其妙的崩溃,对于小型的站点,whoosh已经足够使用
jieba:一款免费的中文分词包,如果觉得不好用可以使用一些收费产品
2.安装
pip install django-haystack
pip install whoosh
pip install jieba
3.配置
因为haystack是一个app,所以我们需要在settings中将他添加的app中,添加Haystack到`INSTALLED_APPS
INSTALLED_APPS = [ ‘django.contrib.admin‘, ‘django.contrib.auth‘, ‘django.contrib.contenttypes‘, ‘django.contrib.sessions‘, ‘django.contrib.sites‘, # 添加 ‘haystack‘, # 你的app ‘blog‘, ]
在添加到配置文件之后,你还需要在你的settings.py中,添加一个设置来指示站点配置文件正在使用的后端,以及其它的后端设置。 HAYSTACK——CONNECTIONS是必需的设置,并且应该至少是以下的一种:
Solr示例
HAYSTACK_CONNECTIONS = ‘default‘: ‘ENGINE‘: ‘haystack.backends.solr_backend.SolrEngine‘, ‘URL‘: ‘http://127.0.0.1:8983/solr‘ # ...or for multicore... # ‘URL‘: ‘http://127.0.0.1:8983/solr/mysite‘, ,
Elasticsearch示例
HAYSTACK_CONNECTIONS = ‘default‘: ‘ENGINE‘: ‘haystack.backends.elasticsearch_backend.ElasticsearchSearchEngine‘, ‘URL‘: ‘http://127.0.0.1:9200/‘, ‘INDEX_NAME‘: ‘haystack‘, ,
Whoosh示例
#需要设置PATH到你的Whoosh索引的文件系统位置 import os HAYSTACK_CONNECTIONS = ‘default‘: ‘ENGINE‘: ‘haystack.backends.whoosh_backend.WhooshEngine‘, ‘PATH‘: os.path.join(os.path.dirname(__file__), ‘whoosh_index‘), , # 自动更新索引 HAYSTACK_SIGNAL_PROCESSOR = ‘haystack.signals.RealtimeSignalProcessor‘
Xapian示例
#首先安装Xapian后端(http://github.com/notanumber/xapian-haystack/tree/master) #需要设置PATH到你的Xapian索引的文件系统位置。 import os HAYSTACK_CONNECTIONS = ‘default‘: ‘ENGINE‘: ‘xapian_backend.XapianEngine‘, ‘PATH‘: os.path.join(os.path.dirname(__file__), ‘xapian_index‘), ,
4.处理数据
创建索引
如果你想针对某个app例如blog做全文检索,则必须在blog的目录下面建立search_indexes.py文件,文件名不能修改
from haystack import indexes from app01.models import Article class ArticleIndex(indexes.SearchIndex, indexes.Indexable): #类名必须为需要检索的Model_name+Index,这里需要检索Article,所以创建ArticleIndex text = indexes.CharField(document=True, use_template=True)#创建一个text字段 #其它字段 desc = indexes.CharField(model_attr=‘desc‘) content = indexes.CharField(model_attr=‘content‘) def get_model(self):#重载get_model方法,必须要有! return Article def index_queryset(self, using=None): return self.get_model().objects.all()
为什么要创建索引?索引就像是一本书的目录,可以为读者提供更快速的导航与查找。在这里也是同样的道理,当数据量非常大的时候,若要从这些数据里找出所有的满足搜索条件的几乎是不太可能的,将会给服务器带来极大的负担。所以我们需要为指定的数据添加一个索引(目录),在这里是为Note创建一个索引,索引的实现细节是我们不需要关心的,至于为它的哪些字段创建索引,怎么指定 ,下面开始讲解。每个索引里面必须有且只能有一个字段为 document=True,这代表haystack 和搜索引擎将使用此字段的内容作为索引进行检索(primary field)。其他的字段只是附属的属性,方便调用,并不作为检索数据
注意:如果使用一个字段设置了document=True,则一般约定此字段名为text,这是在ArticleIndex类里面一贯的命名,以防止后台混乱,当然名字你也可以随便改,不过不建议改。
另外,我们在tex`字段上提供了use_template=True。这允许我们使用一个数据模板(而不是容易出错的级联)来构建文档搜索引擎索引。你应该在模板目录下建立新的模板search/indexes/应用名/article_text.txt,并将下面内容放在里面。
#在目录“templates/search/indexes/应用名称/”下创建“模型类名称_text.txt”文件 object.title object.desc object.content
这个数据模板的作用是对Note.title, Note.user.get_full_name,Note.body这三个字段建立索引,当检索的时候会对这三个字段做全文检索匹配
5.设置视图
添加SearchView到你的URLconf,在你的`URLconf`中添加下面一行:
(r‘^search/‘, include(‘haystack.urls‘)),
这会拉取Haystack的默认URLconf,它由单独指向SearchView实例的URLconf组成。你可以通过传递几个关键参数或者完全重新它来改变这个类的行为。
搜索模板
<!DOCTYPE html> <html> <head> <title></title> <style> span.highlighted color: red; </style> </head> <body> % load highlight % % if query % <h3>搜索结果如下:</h3> % for result in page.object_list % # <a href="/ result.object.id /"> result.object.title </a><br/># <a href="/ result.object.id /">% highlight result.object.title with query max_length 2%</a><br/> <p> result.object.content|safe </p> <p>% highlight result.content with query %</p> % empty % <p>啥也没找到</p> % endfor % % if page.has_previous or page.has_next % <div> % if page.has_previous % <a href="?q= query &page= page.previous_page_number ">% endif %« 上一页 % if page.has_previous %</a>% endif % | % if page.has_next %<a href="?q= query &page= page.next_page_number ">% endif %下一页 » % if page.has_next %</a>% endif % </div> % endif % % endif % </body> </html>
需要注意的是page.object_list实际上是SearchResult对象的列表。这些对象返回索引的所有数据。它们可以通过result.object来访问。所以 result.object.title实际使用的是数据库中Article对象来访问title字段的。
重建索引
现在你已经配置好了所有的事情,是时候把数据库中的数据放入索引了。Haystack附带的一个命令行管理工具使它变得很容易。
./manage.py rebuild_index
6.使用jieba分词
#建立ChineseAnalyzer.py文件 #保存在haystack的安装文件夹下,路径如“D:\python3\Lib\site-packages\haystack\backends” import jieba from whoosh.analysis import Tokenizer, Token class ChineseTokenizer(Tokenizer): def __call__(self, value, positions=False, chars=False, keeporiginal=False, removestops=True, start_pos=0, start_char=0, mode=‘‘, **kwargs): t = Token(positions, chars, removestops=removestops, mode=mode, **kwargs) seglist = jieba.cut(value, cut_all=True) for w in seglist: t.original = t.text = w t.boost = 1.0 if positions: t.pos = start_pos + value.find(w) if chars: t.startchar = start_char + value.find(w) t.endchar = start_char + value.find(w) + len(w) yield t def ChineseAnalyzer(): return ChineseTokenizer()
复制whoosh_backend.py文件,改名为whoosh_cn_backend.py
注意:复制出来的文件名,末尾会有一个空格,记得要删除这个空格
from .ChineseAnalyzer import ChineseAnalyzer 查找 analyzer=StemmingAnalyzer() 改为 analyzer=ChineseAnalyzer()
7.在模版中创建搜索栏
<form method=‘get‘ action="/search/" target="_blank"> <input type="text" name="q"> <input type="submit" value="查询"> </form>
8.其它配置
增加更多变量
from haystack.views import SearchView from .models import * class MySeachView(SearchView): def extra_context(self): #重载extra_context来添加额外的context内容 context = super(MySeachView,self).extra_context() side_list = Topic.objects.filter(kind=‘major‘).order_by(‘add_date‘)[:8] context[‘side_list‘] = side_list return context #路由修改 url(r‘^search/‘, search_views.MySeachView(), name=‘haystack_search‘),
高亮显示
% highlight result.summary with query % # 这里可以限制最终 result.summary 被高亮处理后的长度 % highlight result.summary with query max_length 40 % #html中 <style> span.highlighted color: red; </style>
以上是关于中文检索和分词的主要内容,如果未能解决你的问题,请参考以下文章