sklearn之人工分类和分类边界线
Posted yuxiangyang
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了sklearn之人工分类和分类边界线相关的知识,希望对你有一定的参考价值。
‘‘‘ 人工分类:人为的按照自定的规则对事物进行分类 特征1 特征2 输出 3 1 0 2 5 1 1 8 1 6 4 0 5 2 0 3 5 1 4 7 1 4 -1 0 ... ... ... 6 8 1 5 1 0 分类边界线的绘制 ‘‘‘ import numpy as np import matplotlib.pyplot as mp x = np.array([[3, 1], [2, 5], [1, 8], [6, 4], [5, 2], [3, 5], [4, 7], [4, -1]]) y = np.array([0, 1, 1, 0, 0, 1, 1, 0]) # 根据找到的某些规律,绘制分类边界线 l, r = x[:, 0].min() - 1, x[:, 0].max() + 1 b, t = x[:, 1].min() - 1, x[:, 1].max() + 1 n = 500 grid_x, grid_y = np.meshgrid(np.linspace(l, r, n), np.linspace(b, t, n)) # print(grid_x) # 当x>y时,样本属于0类别,反之则为1类别,grid_z保存的时每个点的类别 grid_z = np.piecewise(grid_x, [grid_x > grid_y, grid_x < grid_y], [0, 1]) # 绘制样本数据 mp.figure(‘Simple Classification‘, facecolor=‘lightgray‘) mp.title(‘Simple Classification‘) mp.xlabel(‘X‘) mp.ylabel(‘Y‘) # 绘制分类边界线(填充网格化矩阵) mp.pcolormesh(grid_x, grid_y, grid_z, cmap=‘gray‘) mp.scatter(x[:, 0], x[:, 1], s=80, c=y, cmap=‘jet‘, label=‘Samples‘) mp.legend() mp.show()
以上是关于sklearn之人工分类和分类边界线的主要内容,如果未能解决你的问题,请参考以下文章
详解支持向量机-支持向量机分类器原理菜菜的sklearn课堂笔记
机器学习sklearn----支持向量机分类器SVC求解过程可视化
机器学习sklearn----支持向量机分类器SVC求解过程可视化