python进程线程协程以及几种自定义线程池
Posted wangheng #这里是用户名
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python进程线程协程以及几种自定义线程池相关的知识,希望对你有一定的参考价值。
Python线程
Threading用于提供线程相关的操作,线程是应用程序中工作的最小单元。
#!/usr/bin/env python # -*- coding:utf-8 -*- import threading import time def show(arg): time.sleep(1) print \'thread\'+str(arg) for i in range(10): t = threading.Thread(target=show, args=(i,)) t.start() print \'main thread stop\'
上述代码创建了10个“前台”线程,然后控制器就交给了CPU,CPU根据指定算法进行调度,分片执行指令。
更多方法:
- start 线程准备就绪,等待CPU调度
- setName 为线程设置名称
- getName 获取线程名称
- setDaemon 设置为后台线程或前台线程(默认)
如果是后台线程,主线程执行过程中,后台线程也在进行,主线程执行完毕后,后台线程不论成功与否,均停止
如果是前台线程,主线程执行过程中,前台线程也在进行,主线程执行完毕后,等待前台线程也执行完成后,程序停止 - join 逐个执行每个线程,执行完毕后继续往下执行,该方法使得多线程变得无意义
- run 线程被cpu调度后自动执行线程对象的run方法
线程锁
由于线程之间是进行随机调度,并且每个线程可能只执行n条执行之后,CPU接着执行其他线程。所以,可能出现如下问题:
#!/usr/bin/env python #coding:utf-8 import threading import time gl_num = 0 lock = threading.RLock() def Func(): lock.acquire() global gl_num gl_num +=1 time.sleep(1) print gl_num lock.release() for i in range(10): t = threading.Thread(target=Func) t.start()
event
python线程的事件用于主线程控制其他线程的执行,事件主要提供了三个方法 set、wait、clear。
事件处理的机制:全局定义了一个“Flag”,如果“Flag”值为 False,那么当程序执行 event.wait 方法时就会阻塞,如果“Flag”值为True,那么event.wait 方法时便不再阻塞。
- clear:将“Flag”设置为False
- set:将“Flag”设置为True
#!/usr/bin/env python # -*- coding:utf-8 -*- import threading def do(event): print \'start\' event.wait() print \'execute\' event_obj = threading.Event() for i in range(10): t = threading.Thread(target=do, args=(event_obj,)) t.start() event_obj.clear() inp = raw_input(\'input:\') if inp == \'true\': event_obj.set()
Python 进程
from multiprocessing import Process import threading import time def foo(i): print \'say hi\',i for i in range(10): p = Process(target=foo,args=(i,)) p.start()
注意:由于进程之间的数据需要各自持有一份,所以创建进程需要的非常大的开销。
进程数据共享
进程各自持有一份数据,默认无法共享数据
#方法一,Array from multiprocessing import Process,Array temp = Array(\'i\', [11,22,33,44]) def Foo(i): temp[i] = 100+i for item in temp: print i,\'----->\',item for i in range(2): p = Process(target=Foo,args=(i,)) p.start() #方法二:manage.dict()共享数据 from multiprocessing import Process,Manager manage = Manager() dic = manage.dict() def Foo(i): dic[i] = 100+i print dic.values() for i in range(2): p = Process(target=Foo,args=(i,)) p.start() p.join()
当创建进程时(非使用时),共享数据会被拿到子进程中,当进程中执行完毕后,再赋值给原值。
进程池
进程池内部维护一个进程序列,当使用时,则去进程池中获取一个进程,如果进程池序列中没有可供使用的进进程,那么程序就会等待,直到进程池中有可用进程为止。
进程池中有两个方法:
- apply
- apply_async
#!/usr/bin/env python # -*- coding:utf-8 -*- from multiprocessing import Process,Pool import time def Foo(i): time.sleep(2) return i+100 def Bar(arg): print arg pool = Pool(5) #print pool.apply(Foo,(1,)) #print pool.apply_async(func =Foo, args=(1,)).get() for i in range(10): pool.apply_async(func=Foo, args=(i,),callback=Bar) print \'end\' pool.close() pool.join()#进程池中进程执行完毕后再关闭,如果注释,那么程序直接关闭。
协程
线程和进程的操作是由程序触发系统接口,最后的执行者是系统;协程的操作则是程序员。
协程存在的意义:对于多线程应用,CPU通过切片的方式来切换线程间的执行,线程切换时需要耗时(保存状态,下次继续)。协程,则只使用一个线程,在一个线程中规定某个代码块执行顺序。
协程的适用场景:当程序中存在大量不需要CPU的操作时(IO),适用于协程;
greenlet
#!/usr/bin/env python # -*- coding:utf-8 -*- from greenlet import greenlet def test1(): print 12 gr2.switch() print 34 gr2.switch() def test2(): print 56 gr1.switch() print 78 gr1 = greenlet(test1) gr2 = greenlet(test2) gr1.switch()
gevent
import gevent def foo(): print(\'Running in foo\') gevent.sleep(0) print(\'Explicit context switch to foo again\') def bar(): print(\'Explicit context to bar\') gevent.sleep(0) print(\'Implicit context switch back to bar\') gevent.joinall([ gevent.spawn(foo), gevent.spawn(bar), ])
遇到IO操作自动切换:
from gevent import monkey; monkey.patch_all() import gevent import urllib2 def f(url): print(\'GET: %s\' % url) resp = urllib2.urlopen(url) data = resp.read() print(\'%d bytes received from %s.\' % (len(data), url)) gevent.joinall([ gevent.spawn(f, \'https://www.python.org/\'), gevent.spawn(f, \'https://www.yahoo.com/\'), gevent.spawn(f, \'https://github.com/\'), ])
线程池:
方案简介:
方案一:简单版本的线程池,每次都要创建线程池;
方案二:支持传函数、传参、传回调函数、立即终止所有线程、最大优点:线程的循环利用,节省时间和资源 ★★★★★
方案三:现有模块,直接调用即可,不支持回调函数
方案一:
#!/usr/bin/env python # -*- coding:utf-8 -*- import Queue import threading class ThreadPool(object): def __init__(self, max_num=20): self.queue = Queue.Queue(max_num) for i in xrange(max_num): self.queue.put(threading.Thread) def get_thread(self): return self.queue.get() def add_thread(self): self.queue.put(threading.Thread) """ pool = ThreadPool(10) def func(arg, p): print arg import time time.sleep(2) p.add_thread() for i in xrange(30): thread = pool.get_thread() t = thread(target=func, args=(i, pool)) t.start() """
方案二:
#!/usr/bin/env python # -*- coding:utf-8 -*- import queue import threading import contextlib import time StopEvent = object() class ThreadPool(object): def __init__(self, max_num): self.q = queue.Queue() self.max_num = max_num self.terminal = False self.generate_list = [] self.free_list = [] def run(self, func, args, callback=None): """ 线程池执行一个任务 :param func: 任务函数 :param args: 任务函数所需参数 :param callback: 任务执行失败或成功后执行的回调函数,回调函数有两个参数1、任务函数执行状态;2、任务函数返回值(默认为None,即:不执行回调函数) :return: 如果线程池已经终止,则返回True否则None """ if len(self.free_list) == 0 and len(self.generate_list) < self.max_num: self.generate_thread() w = (func, args, callback,) self.q.put(w) def generate_thread(self): """ 创建一个线程 """ t = threading.Thread(target=self.call) t.start() def call(self): """ 循环去获取任务函数并执行任务函数 """ current_thread = threading.currentThread self.generate_list.append(current_thread) event = self.q.get() while event != StopEvent: func, arguments, callback = event try: result = func(*arguments) status = True except Exception as e: status = False result = e if callback is not None: try: callback(status, result) except Exception as e: pass if self.terminal: # False event = StopEvent else: with self.worker_state(self.free_list,current_thread): event = self.q.get() else: self.generate_list.remove(current_thread) @contextlib.contextmanager def worker_state(self,x,v): x.append(v) try: yield finally: x.remove(v) def close(self): num = len(self.generate_list) while num: self.q.put(StopEvent) num -= 1 # 终止线程(清空队列) def terminate(self): self.terminal = True while self.generate_list: self.q.put(StopEvent) self.q.empty() import time def work(i): time.sleep(1) print(i) pool = ThreadPool(10) for item in range(50): pool.run(func=work, args=(item,)) # pool.terminate() #立即终止所有线程
方案三、
from concurrent.futures import ThreadPoolExecutor import time def f1(a): time.sleep(2) print(a) return 1 pool=ThreadPoolExecutor(5) for i in range(30): a=pool.submit(f1,i) # x=a.result()#获取返回值,如果有,会阻塞
以上是关于python进程线程协程以及几种自定义线程池的主要内容,如果未能解决你的问题,请参考以下文章