2018 Multi-University Training Contest 10 - TeaTree
Posted onionqaq
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了2018 Multi-University Training Contest 10 - TeaTree相关的知识,希望对你有一定的参考价值。
权值线段树合并
线段树维护1~1e5这个值域,对于每个点开一颗线段树,储存值域内最大的因数。
然后对整个树dfs,合并父亲和儿子节点的线段树,在合并过程中更新答案。
#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
#define full(a, b) memset(a, b, sizeof a)
#define FAST_IO ios::sync_with_stdio(false), cin.tie(0), cout.tie(0)
using namespace std;
typedef long long ll;
inline int lowbit(int x) return x & (-x);
inline int read()
int ret = 0, w = 0; char ch = 0;
while(!isdigit(ch)) w |= ch == '-'; ch = getchar();
while(isdigit(ch)) ret = (ret << 3) + (ret << 1) + (ch ^ 48), ch = getchar();
return w ? -ret : ret;
inline int gcd(int a, int b) return b ? gcd(b, a % b) : a;
inline int lcm(int a, int b) return a / gcd(a, b) * b;
template <typename T>
inline T max(T x, T y, T z) return max(max(x, y), z);
template <typename T>
inline T min(T x, T y, T z) return min(min(x, y), z);
template <typename A, typename B, typename C>
inline A fpow(A x, B p, C lyd)
A ans = 1;
for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd;
return ans;
const int N = 100005;
int n, cnt, tot, head[N], w[N], tree[(N*400)<<2], ls[(N*400)<<2], rs[(N*400)<<2], root[N], res[N];
struct Edge int v, next; edge[N<<1];
vector<int> fac[N];
void calc(int x)
if(!fac[x].empty()) return;
fac[x].push_back(1), fac[x].push_back(x);
for(int i = 2; i <= sqrt(x) + 0.5; i ++)
if(x % i == 0)
fac[x].push_back(i), fac[x].push_back(x / i);
int build()
tot ++;
tree[tot] = ls[tot] = rs[tot] = 0;
return tot;
void addEdge(int a, int b)
edge[cnt].v = b, edge[cnt].next = head[a], head[a] = cnt ++;
void push_up(int rt)
tree[rt] = max(tree[ls[rt]], tree[rs[rt]]);
void insert(int rt, int l, int r, int val)
if(l == r)
tree[rt] = l;
return;
int mid = (l + r) >> 1;
if(val <= mid)
if(!ls[rt]) ls[rt] = build();
insert(ls[rt], l, mid, val);
if(val > mid)
if(!rs[rt]) rs[rt] = build();
insert(rs[rt], mid + 1, r, val);
push_up(rt);
int merge(int p, int q, int l, int r, int &ans)
if(!p || !q) return p ^ q;
if(tree[p] == tree[q]) ans = max(ans, tree[p]);
if(l == r)
tree[p] = max(tree[p], tree[q]);
return p;
int mid = (l + r) >> 1;
ls[p] = merge(ls[p], ls[q], l, mid, ans);
rs[p] = merge(rs[p], rs[q], mid + 1, r, ans);
push_up(p);
return p;
void dfs(int s, int fa)
res[s] = -1;
for(int i = head[s]; i != -1; i = edge[i].next)
int u = edge[i].v;
if(u == fa) continue;
dfs(u, s);
root[s] = merge(root[s], root[u], 1, N, res[s]);
int main()
full(head, -1);
n = read();
for(int i = 2; i <= n; i ++)
int v = read();
addEdge(v, i), addEdge(i, v);
for(int i = 1; i <= n; i ++) w[i] = read();
for(int i = 1; i <= n; i ++) calc(w[i]);
for(int i = 1; i <= n; i ++)
root[i] = build();
for(int j = 0; j < fac[w[i]].size(); j ++)
insert(root[i], 1, N, fac[w[i]][j]);
dfs(1, 0);
for(int i = 1; i <= n; i ++)
printf("%d\n", res[i]);
return 0;
以上是关于2018 Multi-University Training Contest 10 - TeaTree的主要内容,如果未能解决你的问题,请参考以下文章
2018 Multi-University Training Contest 2
2018 Multi-University Training Contest 9
2018 Multi-University Training Contest 4
2018 Multi-University Training Contest 4