分类目标检测语义分割实例分割的区别

Posted zxj9487

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了分类目标检测语义分割实例分割的区别相关的知识,希望对你有一定的参考价值。

计算机视觉的任务很多,有图像分类、目标检测、语义分割、实例分割和全景分割等,那它们的区别是什么呢?

1、Image Classification(图像分类)

图像分类(下图左)就是对图像判断出所属的分类,比如在学习分类中数据集有人(person)、羊(sheep)、狗(dog)和猫(cat)四种,图像分类要求给定一个图片输出图片里含有哪些分类,比如下图的例子是含有person、sheep和dog三种。

技术图片

2、Object detection(目标检测)

目标检测(上图右)简单来说就是图片里面有什么?分别在哪里?(把它们用矩形框框住)

目前常用的目标检测算法有Faster R-CNN和基于YOLO的目标检测的算法

 

3、semantic segmentation(语义分割)

通常意义上的目标分割指的就是语义分割

语义分割(下图左)就是需要区分到图中每一点像素点,而不仅仅是矩形框框住了。但是同一物体的不同实例不需要单独分割出来。对下图左,标注为人,羊,狗,草地。而不需要羊1,羊2,羊3,羊4,羊5等。

技术图片

4、Instance segmentation(实例分割)

实例分割(上图右)其实就是目标检测语义分割的结合。相对目标检测的边界框,实例分割可精确到物体的边缘;相对语义分割,实例分割需要标注出图上同一物体的不同个体(羊1,羊2,羊3...)

目前常用的实例分割算法是Mask R-CNN

Mask R-CNN 通过向 Faster R-CNN 添加一个分支来进行像素级分割,该分支输出一个二进制掩码,该掩码表示给定像素是否为目标对象的一部分:该分支是基于卷积神经网络特征映射的全卷积网络。将给定的卷积神经网络特征映射作为输入,输出为一个矩阵,其中像素属于该对象的所有位置用 1 表示,其他位置则用 0 表示,这就是二进制掩码。

一旦生成这些掩码, Mask R-CNN 将 RoIAlign 与来自 Faster R-CNN 的分类和边界框相结合,以便进行精确的分割:

 

5、Panoramic segmentation(全景分割)

全景分割语义分割实例分割的结合。跟实例分割不同的是:实例分割只对图像中的object进行检测,并对检测到的object进行分割,而全景分割是对图中的所有物体包括背景都要进行检测和分割。

 

以上是关于分类目标检测语义分割实例分割的区别的主要内容,如果未能解决你的问题,请参考以下文章

图像分类目标检测语义/实例/全景分割超像素

图像分类目标检测语义/实例/全景分割超像素

计算机视觉图像分类目标检测人脸比对人脸识别语义分割实例分割图像搜索

MaskLab-实例分割(使用语义分割和方向特征精细化目标检测)

计算机视觉领域不同的方向:目标识别目标检测语义分割等

深度学习下的分类,目标检测语义分割这三个方向具体的概念及其应用场景是什么?