storm写入到hdfs

Posted tangsonghuai

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了storm写入到hdfs相关的知识,希望对你有一定的参考价值。

spout

package com.heibaiying.component;

import org.apache.storm.shade.org.apache.commons.lang.StringUtils;
import org.apache.storm.spout.SpoutOutputCollector;
import org.apache.storm.task.TopologyContext;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.base.BaseRichSpout;
import org.apache.storm.tuple.Fields;
import org.apache.storm.tuple.Values;
import org.apache.storm.utils.Utils;

import java.util.*;


/**
 * 产生词频样本的数据源
 */
public class DataSourceSpout extends BaseRichSpout 

    private List<String> list = Arrays.asList("Spark", "Hadoop", "HBase", "Storm", "Flink", "Hive");

    private SpoutOutputCollector spoutOutputCollector;

    @Override
    public void open(Map map, TopologyContext topologyContext, SpoutOutputCollector spoutOutputCollector) 
        this.spoutOutputCollector = spoutOutputCollector;
    

    @Override
    public void nextTuple() 
        // 模拟产生数据
        String lineData = productData();
        spoutOutputCollector.emit(new Values(lineData));   //向BOLT 提交信息
        Utils.sleep(1000);
    

    @Override
    public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) 
        outputFieldsDeclarer.declare(new Fields("line"));                            //spout   象征性ID
    


    /**
     * 模拟数据
     */
    private String productData() 
        Collections.shuffle(list);           //打乱顺序重新排序
        Random random = new Random();              //声明一个随机数的对象
        int endIndex = random.nextInt(list.size()) % (list.size()) + 1;   //取随机数
        return StringUtils.join(list.toArray(), "\t", 0, endIndex);    //返回   0  ---n  长度的 数组的值  
    

 

 

bolt

package com.heibaiying;

import com.heibaiying.component.DataSourceSpout;
import org.apache.storm.Config;
import org.apache.storm.LocalCluster;
import org.apache.storm.StormSubmitter;
import org.apache.storm.generated.AlreadyAliveException;
import org.apache.storm.generated.AuthorizationException;
import org.apache.storm.generated.InvalidTopologyException;
import org.apache.storm.hdfs.bolt.HdfsBolt;
import org.apache.storm.hdfs.bolt.format.DefaultFileNameFormat;
import org.apache.storm.hdfs.bolt.format.DelimitedRecordFormat;
import org.apache.storm.hdfs.bolt.format.FileNameFormat;
import org.apache.storm.hdfs.bolt.format.RecordFormat;
import org.apache.storm.hdfs.bolt.rotation.FileRotationPolicy;
import org.apache.storm.hdfs.bolt.rotation.FileSizeRotationPolicy;
import org.apache.storm.hdfs.bolt.rotation.FileSizeRotationPolicy.Units;
import org.apache.storm.hdfs.bolt.sync.CountSyncPolicy;
import org.apache.storm.hdfs.bolt.sync.SyncPolicy;
import org.apache.storm.topology.TopologyBuilder;

/**
 * 将样本数据存储到HDFS中
 */
public class DataToHdfsApp 

    private static final String DATA_SOURCE_SPOUT = "dataSourceSpout";
    private static final String HDFS_BOLT = "hdfsBolt";

    public static void main(String[] args) 

        // 指定Hadoop的用户名 如果不指定,则在HDFS创建目录时候有可能抛出无权限的异常(RemoteException: Permission denied)
        System.setProperty("HADOOP_USER_NAME", "root");

        // 定义输出字段(Field)之间的分隔符
        RecordFormat format = new DelimitedRecordFormat()
                .withFieldDelimiter("|");

        // 同步策略: 每100个tuples之后就会把数据从缓存刷新到HDFS中
        SyncPolicy syncPolicy = new CountSyncPolicy(100);

        // 文件策略: 每个文件大小上限1M,超过限定时,创建新文件并继续写入
        FileRotationPolicy rotationPolicy = new FileSizeRotationPolicy(1.0f, Units.MB);

        // 定义存储路径
        FileNameFormat fileNameFormat = new DefaultFileNameFormat()
                .withPath("/storm-hdfs/");

        // 定义HdfsBolt
        HdfsBolt hdfsBolt = new HdfsBolt()
                .withFsUrl("hdfs://192.168.199.125:9000")
                .withFileNameFormat(fileNameFormat)
                .withRecordFormat(format)
                .withRotationPolicy(rotationPolicy)
                .withSyncPolicy(syncPolicy);


        // 构建Topology
        TopologyBuilder builder = new TopologyBuilder();
        builder.setSpout(DATA_SOURCE_SPOUT, new DataSourceSpout());
        // save to HDFS
        builder.setBolt(HDFS_BOLT, hdfsBolt, 1).shuffleGrouping(DATA_SOURCE_SPOUT);


        // 如果外部传参cluster则代表线上环境启动,否则代表本地启动
        if (args.length > 0 && args[0].equals("cluster")) 
            try 
                StormSubmitter.submitTopology("ClusterDataToHdfsApp", new Config(), builder.createTopology());
             catch (AlreadyAliveException | InvalidTopologyException | AuthorizationException e) 
                e.printStackTrace();
            
         else 
            LocalCluster cluster = new LocalCluster();
            cluster.submitTopology("LocalDataToHdfsApp",
                    new Config(), builder.createTopology());
        
    

pom

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>com.heibaiying</groupId>
    <artifactId>storm-hdfs-integration</artifactId>
    <version>1.0</version>

    <properties>
        <storm.version>1.2.2</storm.version>
    </properties>

    <repositories>
        <repository>
            <id>cloudera</id>
            <url>https://repository.cloudera.com/artifactory/cloudera-repos/</url>
        </repository>
    </repositories>

    <dependencies>
        <dependency>
            <groupId>org.apache.storm</groupId>
            <artifactId>storm-core</artifactId>
            <version>$storm.version</version>
        </dependency>
        <!--Storm整合HDFS依赖-->
        <dependency>
            <groupId>org.apache.storm</groupId>
            <artifactId>storm-hdfs</artifactId>
            <version>$storm.version</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>2.6.0-cdh5.15.2</version>
            <exclusions>
                <exclusion>
                    <groupId>org.slf4j</groupId>
                    <artifactId>slf4j-log4j12</artifactId>
                </exclusion>
            </exclusions>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>2.6.0-cdh5.15.2</version>
            <exclusions>
                <exclusion>
                    <groupId>org.slf4j</groupId>
                    <artifactId>slf4j-log4j12</artifactId>
                </exclusion>
            </exclusions>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-hdfs</artifactId>
            <version>2.6.0-cdh5.15.2</version>
            <exclusions>
                <exclusion>
                    <groupId>org.slf4j</groupId>
                    <artifactId>slf4j-log4j12</artifactId>
                </exclusion>
            </exclusions>
        </dependency>
    </dependencies>


    <build>
        <plugins>
            <!--使用java8编译-->
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <configuration>
                    <source>8</source>
                    <target>8</target>
                </configuration>
            </plugin>

            <!--使用shade进行打包-->
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-shade-plugin</artifactId>
                <configuration>
                    <createDependencyReducedPom>true</createDependencyReducedPom>
                    <filters>
                        <filter>
                            <artifact>*:*</artifact>
                            <excludes>
                                <exclude>META-INF/*.SF</exclude>
                                <exclude>META-INF/*.sf</exclude>
                                <exclude>META-INF/*.DSA</exclude>
                                <exclude>META-INF/*.dsa</exclude>
                                <exclude>META-INF/*.RSA</exclude>
                                <exclude>META-INF/*.rsa</exclude>
                                <exclude>META-INF/*.EC</exclude>
                                <exclude>META-INF/*.ec</exclude>
                                <exclude>META-INF/MSFTSIG.SF</exclude>
                                <exclude>META-INF/MSFTSIG.RSA</exclude>
                            </excludes>
                        </filter>
                    </filters>
                    <artifactSet>
                        <excludes>
                            <exclude>org.apache.storm:storm-core</exclude>
                        </excludes>
                    </artifactSet>
                </configuration>
                <executions>
                    <execution>
                        <phase>package</phase>
                        <goals>
                            <goal>shade</goal>
                        </goals>
                        <configuration>
                            <transformers>
                                <transformer
                                        implementation="org.apache.maven.plugins.shade.resource.ServicesResourceTransformer"/>
                                <transformer
                                        implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
                                </transformer>
                            </transformers>
                        </configuration>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>

</project>

 

 

 

 

 

 

 

import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import java.util.Random;

/**
 * Created with IntelliJ IDEA.
 * User: @别慌
 * Date: 2019-07-07
 * Time: 22:00
 * Description:
 */
public class test 

    public static void main(String arg[]) 

        List<String> list = Arrays.asList("Spark", "Hadoop", "HBase", "Storm", "Flink", "Hive");
        Collections.shuffle(list);            //打乱顺序重新排序
        for(int i=0;i<list.size();i++)
            System.out.println(list.get(i));
        
        System.out.println("+-------------------------------------------------------+");
        System.out.println("+-------------------------------------------------------+");

        Random random = new Random();
        int endIndex = random.nextInt(list.size()) % (list.size()) + 1;         //1/3  的余数
        System.out.println(endIndex);

        System.out.println(3%1);  //1除三的余数
        
    

 

以上是关于storm写入到hdfs的主要内容,如果未能解决你的问题,请参考以下文章

如何在Kerberos环境使用Flume采集Kafka数据并写入HDFS

Avro RPC/Storm 集成

将文件上传到 HDFS 或直接创建和写入 HDFS 文件哪个更快?

怎样将数据库数据写入到hdfs中

无法在kafka-storm中将偏移数据写入zookeeper

Storm Trident状态