高精度模板
Posted nublity
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了高精度模板相关的知识,希望对你有一定的参考价值。
#include<bits/stdc++.h> #define MAXN 9999 #define MAXSIZE 10 #define DLEN 4 typedef long long ll; using namespace std; class BigNum private: ll a[50]; //可以控制大数的位数 ll len; //大数长度 public: BigNum() len = 1;memset(a,0,sizeof(a)); //构造函数 BigNum(const ll); //将一个ll类型的变量转化为大数 BigNum(const char*); //将一个字符串类型的变量转化为大数 BigNum(const BigNum &); //拷贝构造函数 BigNum &operator=(const BigNum &); //重载赋值运算符,大数之间进行赋值运算 friend istream& operator>>(istream&, BigNum&); //重载输入运算符 friend ostream& operator<<(ostream&, BigNum&); //重载输出运算符 BigNum operator+(const BigNum &) const; //重载加法运算符,两个大数之间的相加运算 BigNum operator-(const BigNum &) const; //重载减法运算符,两个大数之间的相减运算 BigNum operator*(const BigNum &) const; //重载乘法运算符,两个大数之间的相乘运算 BigNum operator/(const ll &) const; //重载除法运算符,大数对一个整数进行相除运算 BigNum operator^(const ll &) const; //大数的n次方运算 ll operator%(const ll &) const; //大数对一个ll类型的变量进行取模运算 bool operator>(const BigNum & T)const; //大数和另一个大数的大小比较 bool operator>(const ll & t)const; //大数和一个ll类型的变量的大小比较 ; BigNum::BigNum(const ll b) //将一个ll类型的变量转化为大数 ll c,d = b; len = 0; memset(a,0,sizeof(a)); while(d > MAXN) c = d - (d / (MAXN + 1)) * (MAXN + 1); d = d / (MAXN + 1); a[len++] = c; a[len++] = d; BigNum::BigNum(const char*s) //将一个字符串类型的变量转化为大数 ll t,k,index,l,i; memset(a,0,sizeof(a)); l=strlen(s); len=l/DLEN; if(l%DLEN) len++; index=0; for(i=l-1;i>=0;i-=DLEN) t=0; k=i-DLEN+1; if(k<0) k=0; for(ll j=k;j<=i;j++) t=t*10+s[j]-‘0‘; a[index++]=t; BigNum::BigNum(const BigNum & T) : len(T.len) //拷贝构造函数 ll i; memset(a,0,sizeof(a)); for(i = 0 ; i < len ; i++) a[i] = T.a[i]; BigNum & BigNum::operator=(const BigNum & n) //重载赋值运算符,大数之间进行赋值运算 ll i; len = n.len; memset(a,0,sizeof(a)); for(i = 0 ; i < len ; i++) a[i] = n.a[i]; return *this; istream& operator>>(istream & in, BigNum & b) //重载输入运算符 char ch[MAXSIZE*4]; ll i = -1; in>>ch; ll l=strlen(ch); ll count=0,sum=0; for(i=l-1;i>=0;) sum = 0; ll t=1; for(ll j=0;j<4&&i>=0;j++,i--,t*=10) sum+=(ch[i]-‘0‘)*t; b.a[count]=sum; count++; b.len =count++; return in; ostream& operator<<(ostream& out, BigNum& b) //重载输出运算符 ll i; cout << b.a[b.len - 1]; for(i = b.len - 2 ; i >= 0 ; i--) cout.width(DLEN); cout.fill(‘0‘); cout << b.a[i]; return out; BigNum BigNum::operator+(const BigNum & T) const //两个大数之间的相加运算 BigNum t(*this); ll i,big; //位数 big = T.len > len ? T.len : len; for(i = 0 ; i < big ; i++) t.a[i] +=T.a[i]; if(t.a[i] > MAXN) t.a[i + 1]++; t.a[i] -=MAXN+1; if(t.a[big] != 0) t.len = big + 1; else t.len = big; return t; BigNum BigNum::operator-(const BigNum & T) const //两个大数之间的相减运算 ll i,j,big; bool flag; BigNum t1,t2; if(*this>T) t1=*this; t2=T; flag=0; else t1=T; t2=*this; flag=1; big=t1.len; for(i = 0 ; i < big ; i++) if(t1.a[i] < t2.a[i]) j = i + 1; while(t1.a[j] == 0) j++; t1.a[j--]--; while(j > i) t1.a[j--] += MAXN; t1.a[i] += MAXN + 1 - t2.a[i]; else t1.a[i] -= t2.a[i]; t1.len = big; while(t1.a[len - 1] == 0 && t1.len > 1) t1.len--; big--; if(flag) t1.a[big-1]=0-t1.a[big-1]; return t1; BigNum BigNum::operator*(const BigNum & T) const //两个大数之间的相乘运算 BigNum ret; ll i,j,up; ll temp,temp1; for(i = 0 ; i < len ; i++) up = 0; for(j = 0 ; j < T.len ; j++) temp = a[i] * T.a[j] + ret.a[i + j] + up; if(temp > MAXN) temp1 = temp - temp / (MAXN + 1) * (MAXN + 1); up = temp / (MAXN + 1); ret.a[i + j] = temp1; else up = 0; ret.a[i + j] = temp; if(up != 0) ret.a[i + j] = up; ret.len = i + j; while(ret.a[ret.len - 1] == 0 && ret.len > 1) ret.len--; return ret; BigNum BigNum::operator/(const ll & b) const //大数对一个整数进行相除运算 BigNum ret; ll i,down = 0; for(i = len - 1 ; i >= 0 ; i--) ret.a[i] = (a[i] + down * (MAXN + 1)) / b; down = a[i] + down * (MAXN + 1) - ret.a[i] * b; ret.len = len; while(ret.a[ret.len - 1] == 0 && ret.len > 1) ret.len--; return ret; ll BigNum::operator %(const ll & b) const //大数对一个ll类型的变量进行取模运算 ll i,d=0; for (i = len-1; i>=0; i--) d = ((d * (MAXN+1))% b + a[i])% b; return d; BigNum BigNum::operator^(const ll & n) const //大数的n次方运算 BigNum t,ret(1); ll i; if(n<0) exit(-1); if(n==0) return 1; if(n==1) return *this; ll m=n; while(m>1) t=*this; for( i=1;i<<1<=m;i<<=1) t=t*t; m-=i; ret=ret*t; if(m==1) ret=ret*(*this); return ret; bool BigNum::operator>(const BigNum & T) const //大数和另一个大数的大小比较 ll ln; if(len > T.len) return true; else if(len == T.len) ln = len - 1; while(a[ln] == T.a[ln] && ln >= 0) ln--; if(ln >= 0 && a[ln] > T.a[ln]) return true; else return false; else return false; bool BigNum::operator >(const ll & t) const //大数和一个ll类型的变量的大小比较 BigNum b(t); return *this>b; ll n,a[105],m,ans=0; ll gcd(ll a,ll b)return b==0?a:gcd(b,a%b); ll lcm(ll a,ll b)return a/gcd(a,b)*b; void dfs(ll d,ll tot,ll cnt) if(d==n+1) if(cnt) if(cnt&1) ans+=m/tot; else ans-=m/tot; return; dfs(d+1,tot,cnt); BigNum tmp=BigNum(tot)/gcd(tot,a[d])*BigNum(a[d]); if(tmp>BigNum(m)) return; dfs(d+1,lcm(tot,a[d]),cnt+1); int main() scanf("%lld%lld",&n,&m); for(ll i=1;i<=n;i++) scanf("%lld",&a[i]); dfs(1,1,0); ans=max((ll)0,m-ans); printf("%lld\n",ans); return 0;
以上是关于高精度模板的主要内容,如果未能解决你的问题,请参考以下文章