Spark RDD-行动算子
Posted lxl616
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Spark RDD-行动算子相关的知识,希望对你有一定的参考价值。
2.4 Action
行动算子:触发运算,在 Executor 执行,如果想直接在 Driver 端看到结果可以使用 collect 和 foreach 都可以将数据拉取到 Driver 端。
2.4.1 reduce(func) 案例
1. 作用:通过 func 函数聚集 RDD 中的所有元素,先聚合分区内数据,再聚合分区间数据。
2. 需求:创建一个 RDD,将所有元素聚合得到结果
(1)创建一个 RDD[Int]
scala> val rdd1 = sc.makeRDD(1 to 10,2) rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[85] at makeRDD at <console>:24
(2)聚合 RDD[Int]所有元素
scala> rdd1.reduce(_+_) res50: Int = 55
(3)创建一个 RDD[String]
scala> val rdd2 = sc.makeRDD(Array(("a",1),("a",3),("c",3),("d",5))) rdd2: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[86] at makeRDD at <console>:24
(4)聚合 RDD[String]所有数据
scala> rdd2.reduce((x,y)=>(x._1 + y._1,x._2 + y._2)) res51: (String, Int) = (adca,12)
测试:
scala> val rdd = sc.parallelize(1 to 5) rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[28] at parallelize at <console>:24 scala> rdd.reduce(_+_) res17: Int = 15
2.4.2 collect() 案例
从 Executor 端拉取数据到 Driver 端操作:一般用在测试环境中。
1. 作用:在驱动程序中,以数组的形式返回数据集的所有元素。
2. 需求:创建一个 RDD,并将 RDD 内容收集到 Driver 端打印
(1)创建一个 RDD
scala> val rdd = sc.parallelize(1 to 10) rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:24
(2)将结果收集到 Driver 端
scala> rdd.collect res0: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
2.4.3 count() 案例
1. 作用:返回 RDD 中元素的个数
2. 需求:创建一个 RDD,统计该 RDD 的条数
(1)创建一个 RDD
scala> val rdd = sc.parallelize(1 to 10) rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:24
(2)统计该 RDD 的条数
scala> rdd.count res1: Long = 10
2.4.4 first() 案例
1. 作用:返回 RDD 中的第一个元素
2. 需求:创建一个 RDD,返回该 RDD 中的第一个元素
(1)创建一个 RDD
scala> val rdd = sc.parallelize(1 to 10) rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:24
(2)统计该 RDD 的条数
scala> rdd.first res2: Int = 1
2.4.5 take(n) 案例
1. 作用:返回一个由 RDD 的前 n 个元素组成的数组
2. 需求:创建一个 RDD,统计该 RDD 的条数
(1)创建一个 RDD
scala> val rdd = sc.parallelize(Array(2,5,4,6,8,3)) rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[2] at parallelize at <console>:24
(2)统计该 RDD 的条数
scala> rdd.take(3) res10: Array[Int] = Array(2, 5, 4)
2.4.6 takeSample(WithReplacement,num,[seed])
返回一个数组,该数组由从数据集中随机采样的 num 个元素组成,可以选择是否随机数
替换不足的部分,seed 用于指定随机数生成器种子。
2.4.7 takeOrdered(n) 案例
1. 作用:返回该 RDD 排序后的前 n 个元素组成的数组
--相当于先执行 sortBy() 再执行 take()
2. 需求:创建一个 RDD,统计该 RDD 的条数
(1)创建一个 RDD
scala> val rdd = sc.parallelize(Array(2,5,4,6,8,3)) rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[2] at parallelize at <console>:24
(2)统计该 RDD 的条数
scala> rdd.takeOrdered(3) res18: Array[Int] = Array(2, 3, 4)
2.4.8 aggregate 案例
1. 参数:(zeroValue: U)(seqOp: (U, T) ⇒ U, combOp: (U, U) ⇒ U)
2. 作用:aggregate 函数将每个分区里面的元素通过 seqOp 和初始值进行聚合,然后用
combine 函数将每个分区的结果和初始值(zeroValue)进行 combine 操作。这个函数最终返回
的类型不需要和 RDD 中元素类型一致。
3. 需求:创建一个 RDD,将所有元素相加得到结果
(1)创建一个 RDD
scala> var rdd1 = sc.makeRDD(1 to 10,2) rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[88] at makeRDD at <console>:24
(2)将该 RDD 所有元素相加得到结果
scala> rdd.aggregate(0)(_+_,_+_) res22: Int = 55
2.4.9 fold(num)(func) 案例
1. 作用:折叠操作,aggregate 的简化操作,seqop 和 combop 一样。
2. 需求:创建一个 RDD,将所有元素相加得到结果
(1)创建一个 RDD
scala> var rdd1 = sc.makeRDD(1 to 10,2) rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[88] at makeRDD at <console>:24
(2)将该 RDD 所有元素相加得到结果
scala> rdd.fold(0)(_+_) res24: Int = 55
2.4.10 saveAsTextFile(path)
作用:将数据集的元素以 textfile 的形式保存到 HDFS 文件系统或者其他支持的文件系统,
对于每个元素,Spark 将会调用 toString 方法,将它装换为文件中的文本
开发中常用的读入(textFile)和 写出(saveAsTextFile)
2.4.11 saveAsSequenceFile(path)
作用:将数据集中的元素以 Hadoop sequencefile 的格式保存到指定的目录下,可以使
HDFS 或者其他 Hadoop 支持的文件系统。
2.4.12 saveAsObjectFile(path)
作用:用于将 RDD 中的元素序列化成对象,存储到文件中。
2.4.13 countByKey() 案例
1. 作用:针对(K,V)类型的 RDD,返回一个(K,Int)的 map,表示每一个 key 对应的元素个数。
2. 需求:创建一个 PairRDD,统计每种 key 的个数
(1)创建一个 PairRDD
scala> val rdd = sc.parallelize(List((1,3),(1,2),(1,4),(2,3),(3,6),(3,8)),3) rdd: org.apache.spark.rdd.RDD[(Int, Int)] = ParallelCollectionRDD[95] at parallelize at <console>:24
(2)统计每种 key 的个数
scala> rdd.countByKey res63: scala.collection.Map[Int,Long] = Map(3 -> 2, 1 -> 3, 2 -> 1)
测试:
scala> sc.parallelize(Array(1,2,1,2,3,3,3)).map((_,1)).countByKey() res19: scala.collection.Map[Int,Long] = Map(1 -> 2, 2 -> 2, 3 -> 3)
在开发中可以搭配 Sample 查看数据是否倾斜
2.4.14 foreach(func) 案例
1. 作用:在数据集的每一个元素上,运行函数 func 进行更新。
源码:
def foreach(f: T => Unit): Unit = withScope val cleanF = sc.clean(f) sc.runJob(this, (iter: Iterator[T]) => iter.foreach(cleanF))
2. 需求:创建一个 RDD,对每个元素进行打印
(1)创建一个 RDD
scala> var rdd = sc.makeRDD(1 to 5,2) rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[107] at makeRDD at <console>:24
(2)对该 RDD 每个元素进行打印
scala> rdd.foreach(println(_)) 3 4 5 1 2
测试:
scala> rdd.foreach(println) 2 1 4 5 3
以上是关于Spark RDD-行动算子的主要内容,如果未能解决你的问题,请参考以下文章
Spark常用算子合集一文搞定spark中的常用转换与行动算子