算法详解之最近公共祖先(LCA)

Posted hulean

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了算法详解之最近公共祖先(LCA)相关的知识,希望对你有一定的参考价值。

若图片出锅请转至here

概念

首先是最近公共祖先的概念(什么是最近公共祖先?):

在一棵没有环的树上,每个节点肯定有其父亲节点和祖先节点,而最近公共祖先,就是两个节点在这棵树上深度最大的公共的祖先节点。

换句话说,就是两个点在这棵树上距离最近的公共祖先节点。

所以LCA主要是用来处理当两个点仅有唯一一条确定的最短路径时的路径。

有人可能会问:那他本身或者其父亲节点是否可以作为祖先节点呢?

答案是肯定的,很简单,按照人的亲戚观念来说,你的父亲也是你的祖先,而LCA还可以将自己视为祖先节点。

举个例子吧,如下图所示4和5的最近公共祖先是2,5和3的最近公共祖先是1,2和1的最近公共祖先是1。 

技术图片

这就是最近公共祖先的基本概念了,那么我们该如何去求这个最近公共祖先呢?

通常初学者都会想到最简单粗暴的一个办法:对于每个询问,遍历所有的点,时间复杂度为\\(O(n*q)\\) ,很明显,n和q一般不会很小。

怎么办办?

LCA其实有很多种解法,这里介绍一个

Tarjan大法好!

什么是Tarjan(离线)算法呢?顾名思义,就是在一次遍历中把所有询问一次性解决,所以其时间复杂度是\\(O(n+q)\\)

Tarjan算法的优点在于相对稳定,时间复杂度也比较居中,也很容易理解。

下面详细介绍一下Tarjan算法的基本思路:

  1. 任选一个点为根节点,从根节点开始。

  2. 遍历该点u所有子节点v,并标记这些子节点v已被访问过。

  3. 若是v还有子节点,返回2,否则下一步。

  4. 合并v到u上。

  5. 寻找与当前点u有询问关系的点v。

  6. 若是v已经被访问过了,则可以确认u和v的最近公共祖先为v被合并到的父亲节点a。

遍历的话需要用到dfs来遍历(相信来看的人都懂吧...),至于合并,最优化的方式就是利用并查集来合并两个节点。

  • 伪代码
Tarjan(u)//marge和find为并查集合并函数和查找函数

    for each(u,v)    //访问所有u子节点v
    
        Tarjan(v);        //继续往下遍历
        marge(u,v);    //合并v到u上
        标记v被访问过;
    
    for each(u,e)    //访问所有和u有询问关系的e
    
        如果e被访问过;
        u,e的最近公共祖先为find(e);
    

个人感觉这样还是有很多人不太理解,所以打算模拟一遍给大家看。

假设我们有一组数据 9个节点 8条边 联通情况如下:

1--2,1--3,2--4,2--5,3--6,5--7,5--8,7--9 即下图所示的树

设我们要查找最近公共祖先的点为9--8,4--6,7--5,5--3;

f[]数组为并查集的父亲节点数组,初始化f[i]=ivis[]数组为是否访问过的数组,初始为0; 

技术图片

下面开始模拟过程

取1为根节点往下搜索发现有两个儿子2和3;

先搜2,发现2有两个儿子4和5,先搜索4,发现4没有子节点,则寻找与其有关系的点;

发现6与4有关系,但是vis[6]=0,即6还没被搜过,所以不操作

发现没有和4有询问关系的点了,返回此前一次搜索,更新vis[4]=1

技术图片

表示4已经被搜完,更新f[4]=2,继续搜5,发现5有两个儿子7和8;

先搜7,发现7有一个子节点9,搜索9,发现没有子节点,寻找与其有关系的点

发现8和9有关系,但是vis[8]=0,即8没被搜到过,所以不操作

发现没有和9有询问关系的点了,返回此前一次搜索,更新vis[9]=1;

表示9已经被搜完,更新f[9]=7,发现7没有没被搜过的子节点了,寻找与其有关系的点;

发现5和7有关系,但是vis[5]=0,所以不操作

发现没有和7有关系的点了,返回此前一次搜索,更新vis[7]=1

技术图片

表示7已经被搜完,更新f[7]=5,继续搜8,发现8没有子节点,则寻找与其有关系的点;

发现9与8有关系,此时vis[9]=1,则他们的最近公共祖先find(9)=5

(find(9)的顺序为f[9]=7-->f[7]=5-->f[5]=5 return 5;)

发现没有与8有关系的点了,返回此前一次搜索,更新vis[8]=1

表示8已经被搜完,更新f[8]=5,发现5没有没搜过的子节点了,寻找与其有关系的点;

技术图片

发现7和5有关系,此时vis[7]=1,所以他们的最近公共祖先find(7)=5

(find(7)的顺序为f[7]=5-->f[5]=5 return 5;)

又发现5和3有关系,但是vis[3]=0,所以不操作,此时5的子节点全部搜完了;

返回此前一次搜索,更新vis[5]=1,表示5已经被搜完,更新f[5]=2

发现2没有未被搜完的子节点,寻找与其有关系的点;

又发现没有和2有关系的点,则此前一次搜索,更新vis[2]=1

技术图片

表示2已经被搜完,更新f[2]=1,继续搜3,发现3有一个子节点6;

搜索6,发现6没有子节点,则寻找与6有关系的点,发现4和6有关系

此时vis[4]=1,所以它们的最近公共祖先find(4)=1;

(find(4)的顺序为f[4]=2-->f[2]=2-->f[1]=1 return 1;)

发现没有与6有关系的点了,返回此前一次搜索,更新vis[6]=1,表示6已经被搜完了;

技术图片

更新f[6]=3,发现3没有没被搜过的子节点了,则寻找与3有关系的点;

发现5和3有关系,此时vis[5]=1,则它们的最近公共祖先find(5)=1

(find(5)的顺序为f[5]=2-->f[2]=1-->f[1]=1 return 1;)

发现没有和3有关系的点了,返回此前一次搜索,更新vis[3]=

技术图片

更新f[3]=1,发现1没有被搜过的子节点也没有有关系的点,此时可以退出整个dfs了。

经过这次dfs我们得出了所有的答案,有没有觉得很神奇呢?是否对Tarjan算法有更深层次的理解了呢?

参考博文:https://www.cnblogs.com/jvxie/p/4854719.html

以上是关于算法详解之最近公共祖先(LCA)的主要内容,如果未能解决你的问题,请参考以下文章

LCA在线算法详解

最近公共祖先(LCA)---tarjan算法

LCA(最近公共祖先)算法

POJ 1330 Nearest Common Ancestors (最近公共祖先LCA + 详解博客)

LCA(最近公共祖先)——离线 Tarjan 算法

树上最近公共祖先(LCA)的算法