函数调用与汇编指令的关系
Posted simoncook
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了函数调用与汇编指令的关系相关的知识,希望对你有一定的参考价值。
写一段简单的C代码分析其背后与汇编指令的关系
最近在看hotspot的代码,hotspot解释器会将字节码翻译成汇编指令,所以要先复习下这个基础
C代码
#include <stdio.h>
int main(int args, char** argv)
printf("%d", add1(100, 200, 500, 600));
int add1(int i, int j, int k, int m)
return i + j + k + m;
gcc编译验证执行结果:
gcc -g2 FunctionInvokedAssembly.c -o FunctionInvokedAssembly
./FunctionInvokedAssembly
#1400
gcc编译成汇编代码
gcc -S -o FunctionInvokedAssembly.s FunctionInvokedAssembly.c
汇编代码如下:
.file "FunctionInvokedAssembly.c"
.section .rodata
.LC0:
.string "%d"
.text
.globl main
.type main, @function
main:
.LFB0:
.cfi_startproc
pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, -16
movq %rsp, %rbp
.cfi_def_cfa_register 6
subq $16, %rsp
movl %edi, -4(%rbp)
movq %rsi, -16(%rbp)
movl $600, %ecx
movl $500, %edx
movl $200, %esi
movl $100, %edi
movl $0, %eax
call add1
movl %eax, %esi
movl $.LC0, %edi
movl $0, %eax
call printf
leave
.cfi_def_cfa 7, 8
ret
.cfi_endproc
.LFE0:
.size main, .-main
.globl add1
.type add1, @function
add1:
.LFB1:
.cfi_startproc
pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, -16
movq %rsp, %rbp
.cfi_def_cfa_register 6
movl %edi, -4(%rbp)
movl %esi, -8(%rbp)
movl %edx, -12(%rbp)
movl %ecx, -16(%rbp)
movl -8(%rbp), %eax
movl -4(%rbp), %edx
addl %eax, %edx
movl -12(%rbp), %eax
addl %eax, %edx
movl -16(%rbp), %eax
addl %edx, %eax
popq %rbp
.cfi_def_cfa 7, 8
ret
.cfi_endproc
.LFE1:
.size add1, .-add1
.ident "GCC: (Ubuntu 4.8.5-4ubuntu8) 4.8.5"
.section .note.GNU-stack,"",@progbits
汇编用到的一些寄存器及一些指令
- eax, ebx, ecx, edx, esi, edi, ebp(rbp), esp(rbp)等都是X86 汇编语言中CPU上的通用寄存器的名称。
- rbp 调用函数的栈帧栈底地址
- rsp 被调函数的栈帧栈底地址
- eip:寄存器存放下一个CPU指令存放的内存地址,当CPU执行完当前的指令后,从EIP寄存器中读取下一条指令的内存地址,然后继续执行
- 减少esp(rsp)寄存器的值表示扩展栈帧
- X86-64中,所有寄存器都是64位,相对32位的x86来说,标识符发生了变化,比如:从原来的%ebp变成了%rbp。为了向后兼容性,%ebp依然可以使用,不过指向了%rbp的低32位。
- X86-64有16个64位寄存器,分别是:%rax,%rbx,%rcx,%rdx,%esi,%edi,%rbp,%rsp,%r8,%r9,%r10,%r11,%r12,%r13,%r14,%r15。%rax 作为函数返回值使用。%rsp 栈指针寄存器,指向栈顶。%rdi,%rsi,%rdx,%rcx,%r8,%r9 用作函数参数,依次对应第1参数,第2参数...%rbx,%rbp,%r12,%r13,%14,%15 用作数据存储,遵循被调用者使用规则,简单说就是随便用,调用子函数之前要备份它,以防他被修改。%r10,%r11 用作数据存储,遵循调用者使用规则,简单说就是使用之前要先保存原值
一条call指令,完成了两个任务:
- 将调用函数(main)中的下一条指令入栈,被调函数返回后将取这条指令继续执行,64位rsp寄存器的值减8
- 修改指令指针寄存器rip的值,使其指向被调函数的执行位置
寄存器图示
63 31 0
+------------------------------+
|%rax |%eax | 返回值
+------------------------------+
|%rbx |%ebx | 被调用保护者
+------------------------------+
|%rcx |%ecx | 第四个参数
+------------------------------+
|%rdx |%edx | 第三个参数
+------------------------------+
|%rsi |%esi | 第二个参数
+------------------------------+
|%rdi |%edi | 第一个参数
+------------------------------+
|%rbp |%ebp | 被调用者保护
+------------------------------+
|%rsp |%esp | 堆栈指针
+------------------------------+
|%r8 |%r8d | 第五个参数
+------------------------------+
|%r9 |%r9d | 第六个参数
+------------------------------+
|%r10 |%r10d | 调用者保护
+------------------------------+
|%r11 |%r11d | 调用者保护
+------------------------------+
|%r12 |%r12d | 被调用者保护
+------------------------------+
|%r13 |%r13d | 被调用者保护
+------------------------------+
|%r14 |%r14d | 被调用者保护
+------------------------------+
|%r15 |%r15d | 被调用者保护
+------------------------------+
栈帧
+-------------------+
| |
| |
| other frames |
| |
| |
+-------------------+
| |
| |
| last frame |
| |
| |
+-------------------+
| argument 1 |
+-------------------+
| argument 2 |
+-------------------+
| return address |
+-------------------+
%ebp-> | last frame %ebp |
+-------------------+
| |
| |
| current frame |
| |
| |
+-------------------+
%esp-> | |
+-------------------+
入口函数是main,然后调用各个子函数。在对应机器语言中,GCC把过程转化成栈帧(frame),简单的说,每个栈帧对应一个过程。X86-32典型栈帧结构中,由%ebp指向栈帧开始,%esp指向栈顶。
gcc边调试边反编译汇编代码
gdb FunctionInvokedAssembly
> b main
> r
> disassemble /rm
Breakpoint 1, main (args=1, argv=0x7fffffffdf48) at FunctionInvokedAssembly.c:11
11 printf("%d", add1(100, 200, 500, 600));
(gdb) disassemble /rm
Dump of assembler code for function main:
9 int main(int args, char** argv)
0x00000000004004fd <+0>: 55 push %rbp
0x00000000004004fe <+1>: 48 89 e5 mov %rsp,%rbp
0x0000000000400501 <+4>: 48 83 ec 10 sub $0x10,%rsp
0x0000000000400505 <+8>: 89 7d fc mov %edi,-0x4(%rbp)
0x0000000000400508 <+11>: 48 89 75 f0 mov %rsi,-0x10(%rbp)
10 // printf("%d", add1(100, 200, 500, 600, 700, 800, 900, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13));
11 printf("%d", add1(100, 200, 500, 600));
=> 0x000000000040050c <+15>: b9 58 02 00 00 mov $0x258,%ecx
0x0000000000400511 <+20>: ba f4 01 00 00 mov $0x1f4,%edx
0x0000000000400516 <+25>: be c8 00 00 00 mov $0xc8,%esi
0x000000000040051b <+30>: bf 64 00 00 00 mov $0x64,%edi
0x0000000000400520 <+35>: b8 00 00 00 00 mov $0x0,%eax
0x0000000000400525 <+40>: e8 13 00 00 00 callq 0x40053d <add1>
0x000000000040052a <+45>: 89 c6 mov %eax,%esi
0x000000000040052c <+47>: bf f4 05 40 00 mov $0x4005f4,%edi
0x0000000000400531 <+52>: b8 00 00 00 00 mov $0x0,%eax
0x0000000000400536 <+57>: e8 b5 fe ff ff callq 0x4003f0 <[email protected]>
12
0x000000000040053b <+62>: c9 leaveq
0x000000000040053c <+63>: c3 retq
End of assembler dump.
> info register
rax 0x4004fd 4195581
rbx 0x0 0
rcx 0x400570 4195696
rdx 0x7fffffffdf58 140737488346968
rsi 0x7fffffffdf48 140737488346952
rdi 0x1 1
rbp 0x7fffffffde60 0x7fffffffde60
rsp 0x7fffffffde50 0x7fffffffde50
r8 0x7ffff7dd0d80 140737351847296
r9 0x7ffff7dd0d80 140737351847296
r10 0x0 0
r11 0x0 0
r12 0x400400 4195328
r13 0x7fffffffdf40 140737488346944
r14 0x0 0
r15 0x0 0
rip 0x40050c 0x40050c <main+15>
eflags 0x206 [ PF IF ]
cs 0x33 51
ss 0x2b 43
ds 0x0 0
es 0x0 0
fs 0x0 0
gs 0x0 0
参考
X86-64寄存器和栈帧
函数调用过程探究
X86 Opcode and Instruction Reference
你会swap吗,按值传递还是按引用?
寄存器理解 及 X86汇编入门
以上是关于函数调用与汇编指令的关系的主要内容,如果未能解决你的问题,请参考以下文章
Microsoft Detour - 带有汇编程序“调用”指令的挂钩函数
Android 逆向x86 汇编 ( call 子函数调用指令 | jmp 跳转指令 | lea 加载指令 | mov 数据传送指令 )