OpenCV:图像的颜色空间转换

Posted geeksongs

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了OpenCV:图像的颜色空间转换相关的知识,希望对你有一定的参考价值。

导包:

import numpy as np
import cv2
import matplotlib.pyplot as plt
def show(image):
    plt.imshow(image)
    plt.axis(off)
    plt.show()
def imread(image):
    image=cv2.imread(image)
    image=cv2.cvtColor(image,cv2.COLOR_BGR2RGB)
    return image

RGB当中每一个颜色都有256阶亮度,每一阶都对应着一个亮度:

image=imread("123.jpg")
(R,G,B)=cv2.split(image)#这里将通道进行拆分
print(image.shape)
print(image.shape[:2])
zeros=np.zeros(image.shape[:2],dtype=uint8)#这里只取了图像三要素当中的前面部分,毕竟通道拆分之后其颜色空间就仅有一个了
show(cv2.merge([R,zeros,zeros]))
show(cv2.merge([zeros,G,zeros]))
show(cv2.merge([zeros,zeros,B]))#merge是将通道进行合并

颜色空间的HSV模型。 H代表的是颜色的色调,一共从0—360度。每一度代表这不同的颜色模型 S:代表饱和度,饱和度的取值范围是%0—100,如果饱和度越大,则白色的占有率越小,颜色则越饱满,饱和度越小则白色越明显。 V:代表明度,取值是%0——100,0表示的最黑,100表示的是最亮

#由于我们在opencv当中的颜色最开始都是采用的是BGR的模式,然后我们之前编写的函数将BGR转换成了RGB的模式,但是在这里我们需要重新将RGB的格式
#更改为HSV的格式才对
image=imread("123.jpg")
hsv=cv2.cvtColor(image,cv2.COLOR_RGB2HSV)
print(image.shape)
print(image.shape[:2])
zeros=np.zeros(image.shape[:2],dtype=uint8)#这里只取了图像三要素当中的前面部分,毕竟通道拆分之后其颜色空间就仅有一个了
for (name,chan) in zip((H,S,V),cv2.split(hsv)):
    cv2.imshow(name,chan)
cv2.waitKey(0)
cv2.destroyAllWindows()

下面展示灰度图的显示,这个在我们图像处理当中的是最为常用的:

image=cv2.imread("123.jpg")#这里用自带的方法读取图片就不会出现图片显示不正确的结果了
gray=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
cv2.imshow(original,image)
cv2.imshow(gray,gray)
cv2.waitKey(0)
cv2.destroyAllWindows()

 

以上是关于OpenCV:图像的颜色空间转换的主要内容,如果未能解决你的问题,请参考以下文章

opencv 10 -- 图像 颜色空间转换

opencv 10 -- 图像 颜色空间转换

youcans 的 OpenCV 学习课12. 彩色图像的处理

youcans 的 OpenCV 学习课12. 彩色图像的处理

OpenCV进阶--图像颜色空间

opencv converTO()函数 转换图像的数据类型不改变通道数,注意与cvtColor()改变颜色空间/彩色空间/色彩空间函数区分