MA Notes
Posted analysis-pde
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了MA Notes相关的知识,希望对你有一定的参考价值。
Book: A. Figalli 《The Monge Ampere Equation and Its Application》
1.Let $A,B\in R^n\times n$, and assume that $A$ is invertible. Then,
$$\fracddt|_t=0det(A+tB)=det(A)tr(A^-1B)=tr(cof(A)^TB).$$
In addition, the latter formula holds also when $A$ is not invertible.
2.Let $A,B\in R^n\times n$, and assume that $A$ is invertible. Then,
$$\fracddt|_t=0det(A+tB)^-1=det(A)tr(A^-1B)=-A^-1BA^-1.$$
3.Let $A,B\in R^n\times n$ be symmetric nonnegative definite matrices. Then,
$$det(A+B)\geq det(A)+det(B),$$
$$det(A+B)^\frac1n\geq det(A)^\frac1n+det(B)^\frac1n.$$
Furthermore, if $A,B\in R^n\times n$ are symmetric positive definite matrices, then
$$\log det(\lambda A+(1-\lambda)B)\geq \lambda\log det(A) +(1-\lambda)\log det(B).$$
4. Given $A\in R^n\times n$, we denote its operator norm by $||A||$, i.e., $||A||:=\sup_|v|=1|Av|$.
Assume that there exists a constant $K>1$ such that $\frac1KId\leq A^TA\leq AId$.
Then $||A||, ||A^-1||\leq \sqrtK$.
5. Area formula for the gradient of convex functions.
Let $\Omega$ be an open bounded set in $R^n$, and let $u:\Omega\rightarrow R$ be a convex function of class $C^1,1_loc$. Then,
$|\partial u(E)|=\int_E det(D^2u)dx , \forall E\subset \Omega Borel. $
6. Let $u: R^n\rightarrow R$ be a convex function, and assume that $u$ is affine on a line $\hatl$. Then $\partial u(R^n)$ is containted inside a hyperplane orthogonal $\hatl$. In particular, $|\partial u(R^n)|=0.$
以上是关于MA Notes的主要内容,如果未能解决你的问题,请参考以下文章
华为ma5680t OLT 怎么配置华为5620-16 epon交换机 谢谢 高分送上