任意模数fft

Posted acjiumeng

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了任意模数fft相关的知识,希望对你有一定的参考价值。

1.正常拆系数fft,8次dft

//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
//#pragma GCC optimize(4)
//#pragma GCC optimize("unroll-loops")
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include<bits/stdc++.h>
//#include <bits/extc++.h>
#define fi first
#define se second
#define db double
#define mp make_pair
#define pb push_back
#define mt make_tuple
//#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 1000000007
#define ld long double
//#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define sqr(x) ((x)*(x))
#define pll pair<ll,ll>
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
#define ull unsigned long long
#define bpc __builtin_popcount
#define base 1000000000000000000ll
#define fin freopen("a.txt","r",stdin)
#define fout freopen("a.txt","w",stdout)
#define fio ios::sync_with_stdio(false);cin.tie(0)
#define mr mt19937 rng(chrono::steady_clock::now().time_since_epoch().count())
inline ll gcd(ll a,ll b)return b?gcd(b,a%b):a;
inline void sub(ll &a,ll b)a-=b;if(a<0)a+=mod;
inline void add(ll &a,ll b)a+=b;if(a>=mod)a-=mod;
template<typename T>inline T const& MAX(T const &a,T const &b)return a>b?a:b;
template<typename T>inline T const& MIN(T const &a,T const &b)return a<b?a:b;
inline ll qp(ll a,ll b)ll ans=1;while(b)if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;return ans;
inline ll qp(ll a,ll b,ll c)ll ans=1;while(b)if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;return ans;

using namespace std;
//using namespace __gnu_pbds;

const ld pi=acos(-1);
const ull ba=233;
const db eps=1e-5;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=400000+10,maxn=2000000+10,inf=0x3f3f3f3f;

struct cd
    ld x,y;
    cd(ld _x=0.0,ld _y=0.0):x(_x),y(_y)
    cd operator +(const cd &b)const
        return cd(x+b.x,y+b.y);
    
    cd operator -(const cd &b)const
        return cd(x-b.x,y-b.y);
    
    cd operator *(const cd &b)const
        return cd(x*b.x - y*b.y,x*b.y + y*b.x);
    
    cd operator /(const db &b)const
        return cd(x/b,y/b);
    
a[N],b[N],c[N],d[N];
int rev[N],A[N],B[N],C[N];
void getrev(int bit)

    for(int i=0;i<(1<<bit);i++)
        rev[i]=(rev[i>>1]>>1) | ((i&1)<<(bit-1));

void fft(cd *a,int n,int dft)

    for(int i=0;i<n;i++)if(i<rev[i])swap(a[i],a[rev[i]]);
    for(int step=1;step<n;step<<=1)
    
        cd wn(cos(dft*pi/step),sin(dft*pi/step));
        for(int j=0;j<n;j+=step<<1)
        
            cd wnk(1,0);
            for(int k=j;k<j+step;k++)
            
                cd x=a[k];
                cd y=wnk*a[k+step];
                a[k]=x+y;a[k+step]=x-y;
                wnk=wnk*wn;
            
        
    
    if(dft==-1)for(int i=0;i<n;i++)a[i]=a[i]/n;

void mtt(int n,int m,int p) 
    int sz=0;
    while((1<<sz)<=n+m)sz++;getrev(sz);
    int len=1<<sz;
    for(int i=0;i<len;i++)
    
        int t1=A[i]%p,t2=B[i]%p;
        a[i]=cd(t1>>15,0),b[i]=cd(t1&0x7fff,0);
        c[i]=cd(t2>>15,0),d[i]=cd(t2&0x7fff,0);
    
    fft(a,len,1);fft(b,len,1);fft(c,len,1);fft(d,len,1);
    for(int i=0;i<len;i++)
    
        cd aa=a[i],bb=b[i],cc=c[i],dd=d[i];
        a[i]=aa*cc;b[i]=bb*cc;c[i]=aa*dd;d[i]=bb*dd;
    
    fft(a,len,-1);fft(b,len,-1);fft(c,len,-1);fft(d,len,-1);
    for(int i=0;i<len;i++)
    
        ll aa=(ll)(a[i].x+0.5),bb=(ll)(b[i].x+0.5);
        ll cc=(ll)(c[i].x+0.5),dd=(ll)(d[i].x+0.5);
        aa=(aa%p+p)%p;bb=(bb%p+p)%p;cc=(cc%p+p)%p;dd=(dd%p+p)%p;
        C[i]=((((aa<<15)%p)<<15)%p+(bb<<15)%p+(cc<<15)%p+dd)%p;
    

int main()

    int n,m,p;scanf("%d%d%d",&n,&m,&p);
    for(int i=0;i<=n;i++)scanf("%d",&A[i]);
    for(int i=0;i<=m;i++)scanf("%d",&B[i]);
    mtt(n,m,p);
    for(int i=0;i<=n+m;i++)printf("%d ",C[i]);
    return 0;

/********************

********************/

2.黑科技优化拆系数fft,4次dft

//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
//#pragma GCC optimize(4)
//#pragma GCC optimize("unroll-loops")
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include<bits/stdc++.h>
//#include <bits/extc++.h>
#define fi first
#define se second
#define db double
#define mp make_pair
#define pb push_back
#define mt make_tuple
//#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 1000000007
#define ld long double
//#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define sqr(x) ((x)*(x))
#define pll pair<ll,ll>
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
#define ull unsigned long long
#define bpc __builtin_popcount
#define base 1000000000000000000ll
#define fin freopen("a.txt","r",stdin)
#define fout freopen("a.txt","w",stdout)
#define fio ios::sync_with_stdio(false);cin.tie(0)
#define mr mt19937 rng(chrono::steady_clock::now().time_since_epoch().count())
inline ll gcd(ll a,ll b)return b?gcd(b,a%b):a;
inline void sub(ll &a,ll b)a-=b;if(a<0)a+=mod;
inline void add(ll &a,ll b)a+=b;if(a>=mod)a-=mod;
template<typename T>inline T const& MAX(T const &a,T const &b)return a>b?a:b;
template<typename T>inline T const& MIN(T const &a,T const &b)return a<b?a:b;
inline ll qp(ll a,ll b)ll ans=1;while(b)if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;return ans;
inline ll qp(ll a,ll b,ll c)ll ans=1;while(b)if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;return ans;

using namespace std;
//using namespace __gnu_pbds;

const ull ba=233;
const db eps=1e-5;
const ld pi=acos(-1);
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=270000+10,maxn=2000000+10,inf=0x3f3f3f3f;

struct cd
    ld x,y;
    cd(ld _x=0.0,ld _y=0.0):x(_x),y(_y)
    cd operator +(const cd &b)const
        return cd(x+b.x,y+b.y);
    
    cd operator -(const cd &b)const
        return cd(x-b.x,y-b.y);
    
    cd operator *(const cd &b)const
        return cd(x*b.x - y*b.y,x*b.y + y*b.x);
    
    cd operator /(const db &b)const
        return cd(x/b,y/b);
    
a[N],b[N],dfta[N],dftb[N],dftc[N],dftd[N];
cd conj(cd a)return cd(a.x,-a.y);
int rev[N],A[N],B[N],C[N];
void getrev(int bit)

    for(int i=0;i<(1<<bit);i++)
        rev[i]=(rev[i>>1]>>1) | ((i&1)<<(bit-1));

void fft(cd *a,int n,int dft)

    for(int i=0;i<n;i++)if(i<rev[i])swap(a[i],a[rev[i]]);
    for(int step=1;step<n;step<<=1)
    
        cd wn(cos(dft*pi/step),sin(dft*pi/step));
        for(int j=0;j<n;j+=step<<1)
        
            cd wnk(1,0);
            for(int k=j;k<j+step;k++)
            
                cd x=a[k];
                cd y=wnk*a[k+step];
                a[k]=x+y;a[k+step]=x-y;
                wnk=wnk*wn;
            
        
    
    if(dft==-1)for(int i=0;i<n;i++)a[i]=a[i]/n;

void mtt(int n,int m,int p) 
    int sz=0;
    while((1<<sz)<=n+m)sz++;getrev(sz);
    int len=1<<sz;
    for(int i=0;i<len;i++)
    
        int x=(i>n?0:A[i]%p),y=(i>m?0:B[i]%p);
        a[i]=cd(x&0x7fff,x>>15);
        b[i]=cd(y&0x7fff,y>>15);
    
    fft(a,len,1);fft(b,len,1);
    for(int i=0;i<len;i++)
    
        int j=(len-i)&(len-1);
        cd aa,bb,cc,dd;
        aa = (a[i] + conj(a[j])) * cd(0.5, 0);
        bb = (a[i] - conj(a[j])) * cd(0, -0.5);
        cc = (b[i] + conj(b[j])) * cd(0.5, 0);
        dd = (b[i] - conj(b[j])) * cd(0, -0.5);
        dfta[j] = aa * cc;dftb[j] = aa * dd;
        dftc[j] = bb * cc;dftd[j] = bb * dd;
    
    for(int i=0;i<len;i++)
    
        a[i] = dfta[i] + dftb[i] * cd(0, 1);
        b[i] = dftc[i] + dftd[i] * cd(0, 1);
    
    fft(a,len,1);fft(b,len,1);
    for(int i=0;i<len;i++)
    
        int da = (ll)(a[i].x / len + 0.5) % p;
        int bb = (ll)(a[i].y / len + 0.5) % p;
        int dc = (ll)(b[i].x / len + 0.5) % p;
        int dd = (ll)(b[i].y / len + 0.5) % p;
        C[i] = (da + ((ll)(bb + dc) << 15) + ((ll)dd << 30)) % p;
        C[i] = (C[i]+p)%p;
    

int main()

    int n,m,p;scanf("%d%d%d",&n,&m,&p);
    for(int i=0;i<=n;i++)scanf("%d",&A[i]);
    for(int i=0;i<=m;i++)scanf("%d",&B[i]);
    mtt(n,m,p);
    for(int i=0;i<=n+m;i++)printf("%d ",C[i]);
    return 0;

/********************

********************/

以上是关于任意模数fft的主要内容,如果未能解决你的问题,请参考以下文章

任意模数fft

任意模数NTT(拆系数FFT)

任意模数NTT(拆系数FFT)

MTT:任意模数NTT

多项式求逆,除法,开方,任意模数FFT

洛谷 - P4245 模板任意模数多项式乘法(三模NTT+中国剩余定理/五次FFT的MTT)