多线性方程组迭代算法——Jacobi迭代算法的Python实现
Posted fengqiao
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了多线性方程组迭代算法——Jacobi迭代算法的Python实现相关的知识,希望对你有一定的参考价值。
多线性方程(张量)组迭代算法的原理请看这里:若想看原理部分请留言,不方便公开分享
Gauss-Seidel迭代算法:多线性方程组迭代算法——Gauss-Seidel迭代算法的Python实现
import numpy as np import time
1.1 Jacobi迭代算法
def Jacobi_tensor_V2(A,b,Delta,m,n,M): start=time.perf_counter()#开始计时 find=0#用于标记是否在规定步数内收敛 X=np.ones(n)#迭代起始点 x=np.ones(n)#用于存储迭代的中间结果 d=np.ones(n)#用于存储Ax**(m-2)的对角线部分 m1=m-1 m2=2-m for i in range(M): print(‘X‘,X) a=np.copy(A) #得Ax**(m-2) for j in range(m-2): a=np.dot(a,X) #得d 和 (2-m)Dx**(m-2)+(L‘+U‘)x**(m-2) for j in range(n): d[j]=a[j,j] a[j,j]=m2*a[j,j] #迭代更新 for j in range(n): x[j]=(b[j]-np.dot(a[j],X))/(m1*d[j]) #判断是否满足精度要求 if np.max(np.fabs(X-x))<Delta: find=1 break X=np.copy(x) end=time.perf_counter()#结束计时 print(‘时间:‘,end-start) print(‘迭代‘,i) return X,find,i,end-start
1.2 张量A的生成函数和向量b的生成函数:
def Creat_A(m,n):#生成张量A size=np.full(m, n) X=np.ones(n) while 1: #随机生成给定形状的张量A A=np.random.randint(-49,50,size=size) #判断Dx**(m-2)是否非奇异,如果是,则满足要求,跳出循环 D=np.copy(A) for i1 in range(n): for i2 in range(n): if i1!=i2: D[i1,i2]=0 for i in range(m-2): D=np.dot(D,X) det=np.linalg.det(D) if det!=0: break #将A的对角面张量扩大十倍,使对角面占优 for i1 in range(n): for i2 in range(n): if i1==i2: A[i1,i2]=A[i1,i2]*10 print(‘A:‘) print(A) return A #由A和给定的X根据Ax**(m-1)=b生成向量b def Creat_b(A,X,m): a=np.copy(A) for i in range(m-1): a=np.dot(a,X) print(‘b:‘) print(a) return a
1.3 对称张量S的生成函数:
def Creat_S(m,n):#生成对称张量B size=np.full(m, n) S=np.zeros(size) print(‘S‘,S) for i in range(4): #生成n为向量a a=np.random.random(n)*np.random.randint(-5,6) b=np.copy(a) #对a进行m-1次外积,得到秩1对称张量b for j in range(m-1): b=outer(b,a) #将不同的b叠加得到低秩对称张量S S=S+b print(‘S:‘) print(S) return S def outer(a,b): c=[] for i in b: c.append(i*a) return np.array(c) return a
1.4 实验一
def test_1(): Delta=0.01#精度 m=3#A的阶数 n=3#A的维数 M=200#最大迭代步数 X_real=np.array( [2,3,4]) A=Creat_A(m,n) b=Creat_b(A,X_real,m) Jacobi_tensor_V2(A,b,Delta,m,n)
以上是关于多线性方程组迭代算法——Jacobi迭代算法的Python实现的主要内容,如果未能解决你的问题,请参考以下文章