AtCoder ABC 129F Takahashi's Basics in Education and Learning

Posted zaq19970105

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了AtCoder ABC 129F Takahashi's Basics in Education and Learning相关的知识,希望对你有一定的参考价值。

题目链接:https://atcoder.jp/contests/abc129/tasks/abc129_f

题目大意

  给定一个长度为 L ,首项为 A,公差为 B 的等差数列 S,将这 L 个数拼起来,记作 N,求 N % M。

分析

  设 bit(i) 为第 i 项所需要进行的十进制位移。
  则 $N = S_0 * 10^bit(0) + S_1 * 10^bit(1) + \dots + S_L - 1 * 10^bit(L - 1)$。
  一项一项地算是肯定要超时的,不过注意到等差数列的每一项都小于 1018 ,因此很多项的长度是相等的,也就是说有很多 bit(i) 也是等差数列。
  于是我们可以按照位数给等差数列分组,最多可分 18 组。
  举个例子,在区间 [L, R] 上,每一项长度都为 k。
  记这个区间上所表示的数为 A(k),A(k) 的每一项设为 $a_i, (L \leq i \leq R)$,则 $a_i = S_i * 10^bit(i), A(k) = \sum_i = L^R a_i$。
  不难看出$A(k) = 10^bit(L) * \sum_i = L^R (S_i * 10^(R - i) * k)$,只要处理后一部分即可。
  设 $ret(j) = \sum_i = L^j (S_i * 10^(j - i) * k), (L \leq j \leq R)$。
  则有 $ret(j + 1) = ret(j) * 10^k + S_j + 1$,不妨设 ret(L - 1) = 0。
  于是我们可以构造如下系数矩阵 X:
$$
X = \beginbmatrix
10^k & 0 & 0 \\
1 & 1 & 0 \\
0 & B & 1 \\
\endbmatrix
$$
  和如下矩阵 RET(j):
$$
RET(j) = \beginbmatrix
ret(j) & S_j + 1 & 1
\endbmatrix 
$$

  于是有:

$$
RET(j) = RET(j - 1) * X \\
RET(j) = RET(L - 1) * X^j - L + 1
$$

  如此,通过矩阵快速幂,长度为 k 的一组值很快就被算出来了,然后每一组都分别算一下再加起来即可。

  PS:在实际实现过程中组与组之间是可以合并的,并不需要单独算出来每一组的余数,详细实现请看代码。

代码如下

技术图片
  1 #include <bits/stdc++.h>
  2 using namespace std;
  3  
  4 #define INIT() ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
  5 #define Rep(i,n) for (int i = 0; i < (n); ++i)
  6 #define For(i,s,t) for (int i = (s); i <= (t); ++i)
  7 #define rFor(i,t,s) for (int i = (t); i >= (s); --i)
  8 #define ForLL(i, s, t) for (LL i = LL(s); i <= LL(t); ++i)
  9 #define rForLL(i, t, s) for (LL i = LL(t); i >= LL(s); --i)
 10 #define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i)
 11 #define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i)
 12  
 13 #define pr(x) cout << #x << " = " << x << "  "
 14 #define prln(x) cout << #x << " = " << x << endl
 15  
 16 #define LOWBIT(x) ((x)&(-x))
 17  
 18 #define ALL(x) x.begin(),x.end()
 19 #define INS(x) inserter(x,x.begin())
 20 #define UNIQUE(x) x.erase(unique(x.begin(), x.end()), x.end())
 21 #define REMOVE(x, c) x.erase(remove(x.begin(), x.end(), c), x.end()); // 删去 x 中所有 c 
 22 #define TOLOWER(x) transform(x.begin(), x.end(), x.begin(),::tolower);
 23 #define TOUPPER(x) transform(x.begin(), x.end(), x.begin(),::toupper);
 24  
 25 #define ms0(a) memset(a,0,sizeof(a))
 26 #define msI(a) memset(a,inf,sizeof(a))
 27 #define msM(a) memset(a,-1,sizeof(a))
 28 
 29 #define MP make_pair
 30 #define PB push_back
 31 #define ft first
 32 #define sd second
 33  
 34 template<typename T1, typename T2>
 35 istream &operator>>(istream &in, pair<T1, T2> &p) 
 36     in >> p.first >> p.second;
 37     return in;
 38 
 39  
 40 template<typename T>
 41 istream &operator>>(istream &in, vector<T> &v) 
 42     for (auto &x: v)
 43         in >> x;
 44     return in;
 45 
 46  
 47 template<typename T1, typename T2>
 48 ostream &operator<<(ostream &out, const std::pair<T1, T2> &p) 
 49     out << "[" << p.first << ", " << p.second << "]" << "\n";
 50     return out;
 51 
 52 
 53 inline int gc()
 54     static const int BUF = 1e7;
 55     static char buf[BUF], *bg = buf + BUF, *ed = bg;
 56     
 57     if(bg == ed) fread(bg = buf, 1, BUF, stdin);
 58     return *bg++;
 59  
 60 
 61 inline int ri()
 62     int x = 0, f = 1, c = gc();
 63     for(; c<48||c>57; f = c==-?-1:f, c=gc());
 64     for(; c>47&&c<58; x = x*10 + c - 48, c=gc());
 65     return x*f;
 66 
 67 
 68 template<class T>
 69 inline string toString(T x) 
 70     ostringstream sout;
 71     sout << x;
 72     return sout.str();
 73 
 74 
 75 inline int toInt(string s) 
 76     int v;
 77     istringstream sin(s);
 78     sin >> v;
 79     return v;
 80 
 81 
 82 //min <= aim <= max
 83 template<typename T>
 84 inline bool BETWEEN(const T aim, const T min, const T max) 
 85     return min <= aim && aim <= max;
 86 
 87  
 88 typedef long long LL;
 89 typedef unsigned long long uLL;
 90 typedef pair< double, double > PDD;
 91 typedef pair< int, int > PII;
 92 typedef pair< int, PII > PIPII;
 93 typedef pair< string, int > PSI;
 94 typedef pair< int, PSI > PIPSI;
 95 typedef set< int > SI;
 96 typedef set< PII > SPII;
 97 typedef vector< int > VI;
 98 typedef vector< double > VD;
 99 typedef vector< VI > VVI;
100 typedef vector< SI > VSI;
101 typedef vector< PII > VPII;
102 typedef map< int, int > MII;
103 typedef map< int, string > MIS;
104 typedef map< int, PII > MIPII;
105 typedef map< PII, int > MPIII;
106 typedef map< string, int > MSI;
107 typedef map< string, string > MSS;
108 typedef map< PII, string > MPIIS;
109 typedef map< PII, PII > MPIIPII;
110 typedef multimap< int, int > MMII;
111 typedef multimap< string, int > MMSI;
112 //typedef unordered_map< int, int > uMII;
113 typedef pair< LL, LL > PLL;
114 typedef vector< LL > VL;
115 typedef vector< VL > VVL;
116 typedef priority_queue< int > PQIMax;
117 typedef priority_queue< int, VI, greater< int > > PQIMin;
118 const double EPS = 1e-8;
119 const LL inf = 0x7fffffff;
120 const LL infLL = 0x7fffffffffffffffLL;
121 LL mod = 1e9 + 7;
122 const int maxN = 1e5 + 7;
123 const LL ONE = 1;
124 const LL evenBits = 0xaaaaaaaaaaaaaaaa;
125 const LL oddBits = 0x5555555555555555;
126 
127 struct Matrix
128     int row, col;
129     LL MOD;
130     VVL mat;
131     
132     Matrix(int r, int c, LL p = mod) : row(r), col(c), MOD(p)  
133         mat.assign(r, VL(c, 0));
134     
135     Matrix(const Matrix &x, LL p = mod) : MOD(p)
136         mat = x.mat;
137         row = x.row;
138         col = x.col;
139     
140     Matrix(const VVL &A, LL p = mod) : MOD(p)
141         mat = A;
142         row = A.size();
143         col = A[0].size();
144     
145     
146     // x * 单位阵 
147     inline void E(int x = 1) 
148         assert(row == col);
149         Rep(i, row) mat[i][i] = x;
150     
151     
152     inline VL& operator[] (int x) 
153         assert(x >= 0 && x < row);
154         return mat[x];
155     
156     
157     inline Matrix operator= (const VVL &x) 
158         row = x.size();
159         col = x[0].size();
160         mat = x;
161         return *this;
162     
163     
164     inline Matrix operator+ (const Matrix &x) 
165         assert(row == x.row && col == x.col);
166         Matrix ret(row, col);
167         Rep(i, row) 
168             Rep(j, col) 
169                 ret.mat[i][j] = mat[i][j] + x.mat[i][j];
170                 ret.mat[i][j] %= MOD;
171             
172         
173         return ret;
174     
175     
176     inline Matrix operator* (const Matrix &x) 
177         assert(col == x.row);
178         Matrix ret(row, x.col);
179         Rep(k, x.col) 
180             Rep(i, row) 
181                 if(mat[i][k] == 0) continue;
182                 Rep(j, x.col) 
183                     ret.mat[i][j] += mat[i][k] * x.mat[k][j];
184                     ret.mat[i][j] %= MOD;
185                 
186             
187         
188         return ret;
189     
190     
191     inline Matrix operator*= (const Matrix &x)  return *this = *this * x; 
192     inline Matrix operator+= (const Matrix &x)  return *this = *this + x; 
193     
194     inline void print() 
195         Rep(i, row) 
196             Rep(j, col) 
197                 cout << mat[i][j] << " ";
198             
199             cout << endl;
200         
201     
202 ;
203 
204 // 矩阵快速幂,计算x^y 
205 inline Matrix mat_pow_mod(Matrix x, LL y) 
206     Matrix ret(x.row, x.col);
207     ret.E();
208     while(y)
209         if(y & 1) ret *= x;
210         x *= x;
211         y >>= 1;
212     
213     return ret;
214 
215 
216 LL L, A, B, M, ans; 
217 
218 // 从数列第 st 项开始,查找区间 [L, R],使得区间内的所有数都小于 bit 大于等于 bit/10。 
219 // 有返回 true 没有返回 false 
220 LL st = 0, bit = 10, l, r;
221 bool getLR() 
222     if(st >= L || A + st * B >= bit) return false;
223     l = st;
224     r = L - 1;
225     
226     while(l < r) 
227         LL mid = (l + r) >> 1;
228         if(A + mid * B < bit) l = mid + 1;
229         else r = mid;
230     
231     
232     if(A + r * B >= bit) --r;
233     l = st;
234     st = r + 1; // 下一个起始位置 
235     return true;
236 
237 
238 int main()
239     //freopen("MyOutput.txt","w",stdout);
240     //freopen("input.txt","r",stdin);
241     INIT();
242     cin >> L >> A >> B >> mod;
243     
244     For(i, 1, 18)  // 枚举位数 
245         if(getLR()) 
246             Matrix mat(3, 3); 
247             mat[0][0] = bit % mod;
248             mat[0][1] = mat[0][2] = mat[1][2] = mat[2][1] = 0;
249             mat[1][0] = mat[1][1] = mat[2][2] = 1;
250             mat[2][1] = B % mod;
251             
252             mat = mat_pow_mod(mat, r - l + 1);
253             
254             Matrix ret(1, 3); 
255             ret[0][0] = ans;
256             ret[0][1] = (A + l * B) % mod;
257             ret[0][2] = 1;
258             
259             ret *= mat;
260             
261             ans = ret[0][0];
262         
263         bit *= 10;
264     
265     cout << ans << endl;
266     return 0;
267 
View Code

 

以上是关于AtCoder ABC 129F Takahashi's Basics in Education and Learning的主要内容,如果未能解决你的问题,请参考以下文章

AtCoder ABC 155F Perils in Parallel

AtCoder ABC 155D Pairs

ABC 076D - AtCoder Express

[atcoder][abc123D]

Atcoder ABC 141

AtCoder ABC 154E Almost Everywhere Zero